- diff
DiffResult!T diff(T x, T h, T factor, T safe)
- diffImpl
DiffResult!T diffImpl(T delegate(T) @(safe) pure nothrow @(nogc) f, T x, T h, T factor, T safe)
Calculate the derivative of a function.
This function uses Ridders' method of extrapolating the results
of finite difference formulas for consecutively smaller step sizes,
with an improved stopping criterion described in the Numerical Recipes
books by Press et al.
- findLocalMin
FindLocalMinResult!T findLocalMin(T ax, T bx, T relTolerance, T absTolerance, size_t N)
Find a real minimum of a real function f(x) via bracketing.
Given a function f and a range (ax .. bx),
returns the value of x in the range which is closest to a minimum of f(x).
f is never evaluted at the endpoints of ax and bx.
If f(x) has more than one minimum in the range, one will be chosen arbitrarily.
If f(x) returns NaN or -Infinity, (x, f(x), NaN) will be returned;
otherwise, this algorithm is guaranteed to succeed.
- findRoot
FindRootResult!T findRoot(T ax, T bx, T fax, T fbx, T lowerBound, T upperBound, uint maxIterations, uint steps)
Find root of a real function f(x) by bracketing, allowing the
termination condition to be specified.
- findRootImpl
FindRootResult!float findRootImpl(float ax, float bx, float fax, float fbx, float lowerBound, float upperBound, uint maxIterations, uint steps, float delegate(float) @(safe) pure nothrow @(nogc) f, bool delegate(float, float) @(safe) pure nothrow @(nogc) tolerance)
FindRootResult!double findRootImpl(double ax, double bx, double fax, double fbx, double lowerBound, double upperBound, uint maxIterations, uint steps, double delegate(double) @(safe) pure nothrow @(nogc) f, bool delegate(double, double) @(safe) pure nothrow @(nogc) tolerance)
FindRootResult!real findRootImpl(real ax, real bx, real fax, real fbx, real lowerBound, real upperBound, uint maxIterations, uint steps, real delegate(real) @(safe) pure nothrow @(nogc) f, bool delegate(real, real) @(safe) pure nothrow @(nogc) tolerance)
- findSmileRoots
FindSmileRootsResult!T findSmileRoots(T ax, T bx, T fax, T fbx, T relTolerance, T absTolerance, T lowerBound, T upperBound, uint maxIterations, uint steps)
- integrate
T integrate(T a, T b, T tolerance)
- integrateImpl
T integrateImpl(T delegate(T) @(safe) pure nothrow @(nogc) f, T a, T b, T tolerance)
Integrates function on the interval [a, b] using adaptive Gauss-Lobatto algorithm.
Base numeric algorithms.
Reworked part of std.numeric.