controls type of output
algorithm for calculating skewness (default: SkewnessAlgo.hybrid)
algorithm for calculating sums (default: Summation.appropriate)
The skewness of the input, must be floating point or complex type
Simple example
import mir.math.common: approxEqual, pow; import mir.ndslice.slice: sliced; assert(skewness([1.0, 2, 3]).approxEqual(0.0)); assert(skewness([1.0, 2, 4]).approxEqual((2.222222 / 3) / pow(4.666667 / 2, 1.5) * (3.0 ^^ 2) / (2.0 * 1.0))); assert(skewness([1.0, 2, 4], true).approxEqual((2.222222 / 3) / pow(4.666667 / 3, 1.5))); assert(skewness!float([0, 1, 2, 3, 4, 6].sliced(3, 2)).approxEqual(0.462910)); static assert(is(typeof(skewness!float([1, 2, 3])) == float));
Skewness of vector
import mir.math.common: approxEqual, pow; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0]; assert(x.skewness.approxEqual((117.005859 / 12) / pow(54.765625 / 11, 1.5) * (12.0 ^^ 2) / (11.0 * 10.0)));
Skewness of matrix
import mir.math.common: approxEqual, pow; import mir.ndslice.fuse: fuse; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; assert(x.skewness.approxEqual((117.005859 / 12) / pow(54.765625 / 11, 1.5) * (12.0 ^^ 2) / (11.0 * 10.0)));
Column skewness of matrix
import mir.algorithm.iteration: all; import mir.math.common: approxEqual, pow; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: alongDim, byDim, map; auto x = [ [0.0, 1.0, 1.5, 2.0], [3.5, 4.25, 2.0, 7.5], [5.0, 1.0, 1.5, 0.0] ].fuse; auto result = [-1.090291, 1.732051, 1.732051, 1.229809]; // Use byDim or alongDim with map to compute skewness of row/column. assert(x.byDim!1.map!skewness.all!approxEqual(result)); assert(x.alongDim!0.map!skewness.all!approxEqual(result)); // FIXME // Without using map, computes the skewness of the whole slice // assert(x.byDim!1.skewness == x.sliced.skewness); // assert(x.alongDim!0.skewness == x.sliced.skewness);
Can also set algorithm type
import mir.math.common: approxEqual, pow, sqrt; import mir.ndslice.slice: sliced; auto a = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto x = a + 100_000_000_000; // The online algorithm is numerically unstable in this case auto y = x.skewness!"online"; assert(!y.approxEqual((117.005859 / 12) / pow(54.765625 / 11, 1.5) * (12.0 ^^ 2) / (11.0 * 10.0))); // The naive algorithm has an assert error in this case because standard // deviation is calculated naively as zero. The skewness formula would then // be dividing by zero. //auto z0 = x.skewness!(real, "naive"); // However, the two-pass and three-pass algorithms are numerically stable in this case auto z1 = x.skewness!"twoPass"; assert(z1.approxEqual(12.000999 / 12 * sqrt(12.0 * 11.0) / 10.0)); assert(!z1.approxEqual(y)); auto z2 = x.skewness!"threePass"; assert(z2.approxEqual((12.000999 / 12) * sqrt(12.0 * 11.0) / 10.0)); assert(!z2.approxEqual(y)); // And the assumeZeroMean algorithm provides the incorrect answer, as expected auto z3 = x.skewness!"assumeZeroMean"; assert(!z3.approxEqual(y));
Can also set algorithm or output type
import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; import mir.ndslice.topology: repeat; //Set population skewness, skewness algorithm, sum algorithm or output type auto a = [1.0, 1e98, 1, -1e98].sliced; auto x = a * 10_000; /++ Due to Floating Point precision, when centering `x`, subtracting the mean from the second and fourth numbers has no effect. Further, after centering and squaring `x`, the first and third numbers in the slice have precision too low to be included in the centered sum of squares. +/ assert(x.skewness(false).approxEqual(0.0)); assert(x.skewness(true).approxEqual(0.0)); assert(x.skewness!("online").approxEqual(0.0)); assert(x.skewness!("online", "kbn").approxEqual(0.0)); assert(x.skewness!("online", "kb2").approxEqual(0.0)); assert(x.skewness!("online", "precise").approxEqual(0.0)); assert(x.skewness!(double, "online", "precise").approxEqual(0.0)); assert(x.skewness!(double, "online", "precise")(true).approxEqual(0.0)); auto y = [uint.max - 2, uint.max - 1, uint.max].sliced; auto z = y.skewness!(ulong, "threePass"); assert(z == 0.0); static assert(is(typeof(z) == double));
For integral slices, can pass output type as template parameter to ensure output type is correct.
import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0, 1, 1, 2, 4, 4, 2, 7, 5, 1, 2, 0].sliced; auto y = x.skewness; assert(y.approxEqual(0.925493)); static assert(is(typeof(y) == double)); assert(x.skewness!float.approxEqual(0.925493));
Skewness works for other user-defined types (provided they can be converted to a floating point)
static struct Foo { float x; alias x this; } Foo[] foo = [Foo(1f), Foo(2f), Foo(3f)]; assert(foo.skewness == 0f);
Compute skewness along specified dimention of tensors
import mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: as, iota, alongDim, map, repeat; auto x = [ [0.0, 1, 3], [3.0, 4, 5], [6.0, 7, 7], ].fuse; assert(x.skewness.approxEqual(-0.308571)); auto m0 = [0, 0.0, 0.0]; assert(x.alongDim!0.map!skewness.all!approxEqual(m0)); assert(x.alongDim!(-2).map!skewness.all!approxEqual(m0)); auto m1 = [0.935220, 0.0, -1.732051]; assert(x.alongDim!1.map!skewness.all!approxEqual(m1)); assert(x.alongDim!(-1).map!skewness.all!approxEqual(m1)); assert(iota(3, 4, 5, 6).as!double.alongDim!0.map!skewness.all!approxEqual(repeat(0.0, 4, 5, 6)));
Arbitrary skewness
assert(skewness(1.0, 2, 3) == 0.0); assert(skewness!float(1, 2, 3) == 0f);
Calculates the skewness of the input
By default, if F is not floating point type, then the result will have a double type if F is implicitly convertible to a floating point type.