algorithm for calculating sums (default: Summation.appropriate)
true if weights are assumed to add to 1 (default = AssumeWeights.primary)
The weighted mean of all the elements in the input, must be floating point or complex type
import mir.complex; import mir.ndslice.slice: sliced; import mir.test: should, shouldApprox; alias C = Complex!double; wmean([1.0, 2, 3], [1, 2, 3]).shouldApprox == (1.0 + 4.0 + 9.0) / 6; wmean!true([1.0, 2, 3], [1.0 / 6, 2.0 / 6, 3.0 / 6]).shouldApprox == (1.0 + 4.0 + 9.0) / 6; wmean([C(1, 3), C(2), C(3)], [1, 2, 3]).should == C(14.0 / 6, 3.0 / 6); wmean!float([0, 1, 2, 3, 4, 5].sliced(3, 2), [1, 2, 3, 4, 5, 6].sliced(3, 2)).shouldApprox == 70.0 / 21; static assert(is(typeof(wmean!float([1, 2, 3], [1, 2, 3])) == float));
If weights are not provided, then behaves like mean
import mir.complex; import mir.ndslice.slice: sliced; import mir.test: should; alias C = Complex!double; wmean([1.0, 2, 3]).should == 2; wmean([C(1, 3), C(2), C(3)]).should == C(2, 1); wmean!float([0, 1, 2, 3, 4, 5].sliced(3, 2)).should == 2.5; static assert(is(typeof(wmean!float([1, 2, 3])) == float));
Weighted mean of vector
import mir.ndslice.slice: sliced; import mir.ndslice.topology: iota, map; import mir.test: shouldApprox; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto w = iota([12], 1); auto w_SumToOne = w.map!(a => a / 78.0); x.wmean.shouldApprox == 29.25 / 12; x.wmean(w).shouldApprox == 203.0 / 78; x.wmean!true(w_SumToOne).shouldApprox == 203.0 / 78;
Weighted mean of matrix
import mir.ndslice.fuse: fuse; import mir.ndslice.topology: iota, map; import mir.test: shouldApprox; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; auto w = iota([2, 6], 1); auto w_SumToOne = w.map!(a => a / 78.0); x.wmean.shouldApprox == 29.25 / 12; x.wmean(w).shouldApprox == 203.0 / 78; x.wmean!true(w_SumToOne).shouldApprox == 203.0 / 78;
Column mean of matrix
import mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: alongDim, byDim, iota, map, universal; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; auto w = iota([2], 1).universal; auto result = [4.0 / 3, 16.0 / 3, 11.5 / 3, 4.0 / 3, 6.5 / 3, 4.25 / 3]; // Use byDim or alongDim with map to compute mean of row/column. assert(x.byDim!1.map!(a => a.wmean(w)).all!approxEqual(result)); assert(x.alongDim!0.map!(a => a.wmean(w)).all!approxEqual(result)); // FIXME // Without using map, computes the mean of the whole slice // assert(x.byDim!1.wmean(w) == x.sliced.wmean); // assert(x.alongDim!0.wmean(w) == x.sliced.wmean);
Can also set algorithm or output type
import mir.ndslice.slice: sliced; import mir.ndslice.topology: repeat, universal; import mir.test: shouldApprox; //Set sum algorithm (also for weights) or output type auto a = [1, 1e100, 1, -1e100].sliced; auto x = a * 10_000; auto w1 = [1, 1, 1, 1].sliced; auto w2 = [0.25, 0.25, 0.25, 0.25].sliced; x.wmean!"kbn"(w1).shouldApprox == 20_000 / 4; x.wmean!(true, "kbn")(w2).shouldApprox == 20_000 / 4; x.wmean!("kbn", true)(w2).shouldApprox == 20_000 / 4; x.wmean!("kbn", true, "pairwise")(w2).shouldApprox == 20_000 / 4; x.wmean!(true, "kbn", "pairwise")(w2).shouldApprox == 20_000 / 4; x.wmean!"kb2"(w1).shouldApprox == 20_000 / 4; x.wmean!"precise"(w1).shouldApprox == 20_000 / 4; x.wmean!(double, "precise")(w1).shouldApprox == 20_000.0 / 4; auto y = uint.max.repeat(3); y.wmean!ulong([1, 1, 1].sliced.universal).shouldApprox == 12884901885 / 3;
For integral slices, can pass output type as template parameter to ensure output type is correct.
import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; import mir.test: shouldApprox; auto x = [0, 1, 1, 2, 4, 4, 2, 7, 5, 1, 2, 0].sliced; auto w = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].sliced; auto y = x.wmean(w); y.shouldApprox(1.0e-10) == 204.0 / 78; static assert(is(typeof(y) == double)); x.wmean!float(w).shouldApprox(1.0e-10) == 204f / 78;
Mean works for complex numbers and other user-defined types (provided they can be converted to a floating point or complex type)
import mir.complex; import mir.ndslice.slice: sliced; import mir.test: should; alias C = Complex!double; auto x = [C(1.0, 2), C(2, 3), C(3, 4), C(4, 5)].sliced; auto w = [1, 2, 3, 4].sliced; x.wmean(w).should == C(3, 4);
Compute weighted mean tensors along specified dimention of tensors
import mir.ndslice.fuse: fuse; import mir.ndslice.slice: sliced; import mir.ndslice.topology: alongDim, as, iota, map, universal; /++ [[0,1,2], [3,4,5]] +/ auto x = [ [0, 1, 2], [3, 4, 5] ].fuse.as!double; auto w = [ [1, 2, 3], [4, 5, 6] ].fuse; auto w1 = [1, 2].sliced.universal; auto w2 = [1, 2, 3].sliced; assert(x.wmean(w) == (70.0 / 21)); auto m0 = [(0.0 + 6.0) / 3, (1.0 + 8.0) / 3, (2.0 + 10.0) / 3]; assert(x.alongDim!0.map!(a => a.wmean(w1)) == m0); assert(x.alongDim!(-2).map!(a => a.wmean(w1)) == m0); auto m1 = [(0.0 + 2.0 + 6.0) / 6, (3.0 + 8.0 + 15.0) / 6]; assert(x.alongDim!1.map!(a => a.wmean(w2)) == m1); assert(x.alongDim!(-1).map!(a => a.wmean(w2)) == m1); assert(iota(2, 3, 4, 5).as!double.alongDim!0.map!wmean == iota([3, 4, 5], 3 * 4 * 5 / 2));
$(MATHREF sum, Summation), $(SUB2REF univariate, mean), $(SUB2REF univariate, meanType)
Computes the weighted mean of the input.
By default, if F is not floating point type or complex type, then the result will have a double type if F is implicitly convertible to a floating point type or a type for which isComplex!F is true.