- bernoulliInvCDF (from mir.stat.distribution.bernoulli)
bool bernoulliInvCDF(T q, T p) via public
import mir.stat.distribution.bernoulli : bernoulliInvCDF;
- betaInvCDF (from mir.stat.distribution.beta)
T betaInvCDF(T p, T alpha, T beta) via public
import mir.stat.distribution.beta : betaInvCDF;
- betaProportionInvCDF (from mir.stat.distribution.beta_proportion)
T betaProportionInvCDF(T p, T mu, T kappa) via public
import mir.stat.distribution.beta_proportion : betaProportionInvCDF;
- categoricalInvCDF (from mir.stat.distribution.categorical)
size_t categoricalInvCDF(T q, T[] p) via public
import mir.stat.distribution.categorical : categoricalInvCDF;
- cauchyInvCDF (from mir.stat.distribution.cauchy)
T cauchyInvCDF(T p, T location, T scale) via public
import mir.stat.distribution.cauchy : cauchyInvCDF;
- chi2InvCDF (from mir.stat.distribution.chi2)
T chi2InvCDF(T p, uint k) via public
import mir.stat.distribution.chi2 : chi2InvCDF;
- cornishFisherInvCDF (from mir.stat.distribution.cornish_fisher)
T cornishFisherInvCDF(T p, T skewness, T excessKurtosis) via public
import mir.stat.distribution.cornish_fisher : cornishFisherInvCDF;
- exponentialInvCDF (from mir.stat.distribution.exponential)
T exponentialInvCDF(T p, T lambda) via public
import mir.stat.distribution.exponential : exponentialInvCDF;
- fInvCDF (from mir.stat.distribution.f)
T fInvCDF(T p, T df1, T df2) via public
import mir.stat.distribution.f : fInvCDF;
- gammaInvCDF (from mir.stat.distribution.gamma)
T gammaInvCDF(T p, T shape, T scale) via public
import mir.stat.distribution.gamma : gammaInvCDF;
- generalizedParetoInvCDF (from mir.stat.distribution.generalized_pareto)
T generalizedParetoInvCDF(T p, T mu, T sigma, T xi) via public
import mir.stat.distribution.generalized_pareto : generalizedParetoInvCDF;
- geometricInvCDF (from mir.stat.distribution.geometric)
T geometricInvCDF(T q, T p) via public
import mir.stat.distribution.geometric : geometricInvCDF;
- gevInvCDF (from mir.stat.distribution.gev)
T gevInvCDF(T p, T mu, T sigma, T xi) via public
import mir.stat.distribution.gev : gevInvCDF;
- laplaceInvCDF (from mir.stat.distribution.laplace)
T laplaceInvCDF(T p, T location, T scale) via public
import mir.stat.distribution.laplace : laplaceInvCDF;
- logNormalInvCDF (from mir.stat.distribution.log_normal)
T logNormalInvCDF(T p, T mean, T stdDev) via public
import mir.stat.distribution.log_normal : logNormalInvCDF;
- logisticInvCDF (from mir.stat.distribution.logistic)
T logisticInvCDF(T p, T location, T scale) via public
import mir.stat.distribution.logistic : logisticInvCDF;
- negativeBinomialInvCDF (from mir.stat.distribution.negative_binomial)
size_t negativeBinomialInvCDF(T q, size_t r, T p) via public
import mir.stat.distribution.negative_binomial : negativeBinomialInvCDF;
- paretoInvCDF (from mir.stat.distribution.pareto)
T paretoInvCDF(T p, T xMin, T alpha) via public
import mir.stat.distribution.pareto : paretoInvCDF;
- rayleighInvCDF (from mir.stat.distribution.rayleigh)
T rayleighInvCDF(T p, T scale) via public
import mir.stat.distribution.rayleigh : rayleighInvCDF;
- studentsTInvCDF (from mir.stat.distribution.students_t)
T studentsTInvCDF(T p, T nu, T mean, T stdDev) via public
import mir.stat.distribution.students_t : studentsTInvCDF;
- uniformDiscreteInvCDF (from mir.stat.distribution.uniform_discrete)
size_t uniformDiscreteInvCDF(T p, size_t lower, size_t upper) via public
import mir.stat.distribution.uniform_discrete : uniformDiscreteInvCDF;
- uniformInvCDF (from mir.stat.distribution.uniform)
T uniformInvCDF(T p, T lower, T upper) via public
import mir.stat.distribution.uniform : uniformInvCDF;
- weibullInvCDF (from mir.stat.distribution.weibull)
T weibullInvCDF(T p, T shape, T scale) via public
import mir.stat.distribution.weibull : weibullInvCDF;
This package publicly imports mir.stat.distribution.*InvCDF modules.