The OpenD Programming Language

mir.stat.distribution.invcdf

This package publicly imports mir.stat.distribution.*InvCDF modules.

FunctionsDescription
Univariate Discrete Distributions
bernoulliInvCDFBernoulli Inverse CDF
binomialInvCDFBinomial Inverse CDF
geometricInvCDFGeometric Inverse CDF
hypergeometricInvCDFHypergeometric Inverse CDF
negativeBinomialInvCDFNegative Binomial Inverse CDF
poissonInvCDFPoisson Inverse CDF
uniformDiscreteInvCDFDiscrete Uniform Inverse CDF
Univariate Continuous Distributions
betaInvCDFBeta Inverse CDF
betaProportionInvCDFBeta Proportion Inverse CDF
cauchyInvCDFCauchy Inverse CDF
chi2InvCDFChi-squared Inverse CDF
exponentialInvCDFExponential Inverse CDF
fInvCDFF Inverse CDF
gammaInvCDFGamma Inverse CDF
generalizedParetoInvCDFGeneralized Pareto Inverse CDF
gevInvCDFGeneralized Extreme Value (GEV) Inverse CDF
laplaceInvCDFLaplace Inverse CDF
logNormalInvCDFLog-normal Inverse CDF
logisticInvCDFLogistic Inverse CDF
normalInvCDFNormal Inverse CDF
paretoInvCDFPareto Inverse CDF
rayleighInvCDFRayleigh Inverse CDF
studentsTInvCDFStudent's t Inverse CDF
uniformInvCDFContinuous Uniform Inverse CDF
weibullInvCDFWeibull Inverse CDF
Multivariate Distributions
categoricalInvCDFCategorical Inverse CDF

Members

Functions

bernoulliInvCDF (from mir.stat.distribution.bernoulli)
bool bernoulliInvCDF(T q, T p) via public import mir.stat.distribution.bernoulli : bernoulliInvCDF;
betaInvCDF (from mir.stat.distribution.beta)
T betaInvCDF(T p, T alpha, T beta) via public import mir.stat.distribution.beta : betaInvCDF;
betaProportionInvCDF (from mir.stat.distribution.beta_proportion)
T betaProportionInvCDF(T p, T mu, T kappa) via public import mir.stat.distribution.beta_proportion : betaProportionInvCDF;
categoricalInvCDF (from mir.stat.distribution.categorical)
size_t categoricalInvCDF(T q, T[] p) via public import mir.stat.distribution.categorical : categoricalInvCDF;
cauchyInvCDF (from mir.stat.distribution.cauchy)
T cauchyInvCDF(T p, T location, T scale) via public import mir.stat.distribution.cauchy : cauchyInvCDF;
chi2InvCDF (from mir.stat.distribution.chi2)
T chi2InvCDF(T p, uint k) via public import mir.stat.distribution.chi2 : chi2InvCDF;
cornishFisherInvCDF (from mir.stat.distribution.cornish_fisher)
T cornishFisherInvCDF(T p, T skewness, T excessKurtosis) via public import mir.stat.distribution.cornish_fisher : cornishFisherInvCDF;
exponentialInvCDF (from mir.stat.distribution.exponential)
T exponentialInvCDF(T p, T lambda) via public import mir.stat.distribution.exponential : exponentialInvCDF;
fInvCDF (from mir.stat.distribution.f)
T fInvCDF(T p, T df1, T df2) via public import mir.stat.distribution.f : fInvCDF;
gammaInvCDF (from mir.stat.distribution.gamma)
T gammaInvCDF(T p, T shape, T scale) via public import mir.stat.distribution.gamma : gammaInvCDF;
generalizedParetoInvCDF (from mir.stat.distribution.generalized_pareto)
T generalizedParetoInvCDF(T p, T mu, T sigma, T xi) via public import mir.stat.distribution.generalized_pareto : generalizedParetoInvCDF;
geometricInvCDF (from mir.stat.distribution.geometric)
T geometricInvCDF(T q, T p) via public import mir.stat.distribution.geometric : geometricInvCDF;
gevInvCDF (from mir.stat.distribution.gev)
T gevInvCDF(T p, T mu, T sigma, T xi) via public import mir.stat.distribution.gev : gevInvCDF;
laplaceInvCDF (from mir.stat.distribution.laplace)
T laplaceInvCDF(T p, T location, T scale) via public import mir.stat.distribution.laplace : laplaceInvCDF;
logNormalInvCDF (from mir.stat.distribution.log_normal)
T logNormalInvCDF(T p, T mean, T stdDev) via public import mir.stat.distribution.log_normal : logNormalInvCDF;
logisticInvCDF (from mir.stat.distribution.logistic)
T logisticInvCDF(T p, T location, T scale) via public import mir.stat.distribution.logistic : logisticInvCDF;
negativeBinomialInvCDF (from mir.stat.distribution.negative_binomial)
size_t negativeBinomialInvCDF(T q, size_t r, T p) via public import mir.stat.distribution.negative_binomial : negativeBinomialInvCDF;
paretoInvCDF (from mir.stat.distribution.pareto)
T paretoInvCDF(T p, T xMin, T alpha) via public import mir.stat.distribution.pareto : paretoInvCDF;
rayleighInvCDF (from mir.stat.distribution.rayleigh)
T rayleighInvCDF(T p, T scale) via public import mir.stat.distribution.rayleigh : rayleighInvCDF;
studentsTInvCDF (from mir.stat.distribution.students_t)
T studentsTInvCDF(T p, T nu, T mean, T stdDev) via public import mir.stat.distribution.students_t : studentsTInvCDF;
uniformDiscreteInvCDF (from mir.stat.distribution.uniform_discrete)
size_t uniformDiscreteInvCDF(T p, size_t lower, size_t upper) via public import mir.stat.distribution.uniform_discrete : uniformDiscreteInvCDF;
uniformInvCDF (from mir.stat.distribution.uniform)
T uniformInvCDF(T p, T lower, T upper) via public import mir.stat.distribution.uniform : uniformInvCDF;
weibullInvCDF (from mir.stat.distribution.weibull)
T weibullInvCDF(T p, T shape, T scale) via public import mir.stat.distribution.weibull : weibullInvCDF;

Imports

normalInvCDF (from mir.stat.distribution.normal)
public import mir.stat.distribution.normal : normalInvCDF;

Templates

binomialInvCDF (from mir.stat.distribution.binomial)
template binomialInvCDF(string binomialAlgo, string poissonAlgo = "direct") via public import mir.stat.distribution.binomial : binomialInvCDF;
hypergeometricInvCDF (from mir.stat.distribution.hypergeometric)
template hypergeometricInvCDF(string hypergeometricAlgo) via public import mir.stat.distribution.hypergeometric : hypergeometricInvCDF;
poissonInvCDF (from mir.stat.distribution.poisson)
template poissonInvCDF(string poissonAlgo) via public import mir.stat.distribution.poisson : poissonInvCDF;

Meta

Authors

John Michael Hall, Ilya Yaroshenko