The OpenD Programming Language

1 /**
2  * Identify the characteristics of the host CPU, providing information
3  * about cache sizes and assembly optimisation hints. This module is
4  * provided primarily for assembly language programmers.
5  *
6  * References:
7  * Some of this information was extremely difficult to track down. Some of the
8  * documents below were found only in cached versions stored by search engines!
9  * This code relies on information found in:
10  *
11  * $(UL
12  * $(LI "Intel(R) 64 and IA-32 Architectures Software Developers Manual,
13  *    Volume 2A: Instruction Set Reference, A-M" (2007).
14  * )
15  * $(LI "AMD CPUID Specification", Advanced Micro Devices, Rev 2.28 (2008).
16  * )
17  * $(LI "AMD Processor Recognition Application Note For Processors Prior to AMD
18  *    Family 0Fh Processors", Advanced Micro Devices, Rev 3.13 (2005).
19  * )
20  * $(LI "AMD Geode(TM) GX Processors Data Book",
21  *    Advanced Micro Devices, Publication ID 31505E, (2005).
22  * )
23  * $(LI "AMD K6 Processor Code Optimisation", Advanced Micro Devices, Rev D (2000).
24  * )
25  * $(LI "Application note 106: Software Customization for the 6x86 Family",
26  *    Cyrix Corporation, Rev 1.5 (1998)
27  * )
28  * $(LI $(LINK http://www.datasheetcatalog.org/datasheet/nationalsemiconductor/GX1.pdf))
29  * $(LI "Geode(TM) GX1 Processor Series Low Power Integrated X86 Solution",
30  *   National Semiconductor, (2002)
31  * )
32  * $(LI "The VIA Isaiah Architecture", G. Glenn Henry, Centaur Technology, Inc (2008).
33  * )
34  * $(LI $(LINK http://www.sandpile.org/ia32/cpuid.htm))
35  * $(LI $(LINK http://www.akkadia.org/drepper/cpumemory.pdf))
36  * $(LI "What every programmer should know about memory",
37  *    Ulrich Depper, Red Hat, Inc., (2007).
38  * )
39  * $(LI "CPU Identification by the Windows Kernel", G. Chappell (2009).
40  *   $(LINK http://www.geoffchappell.com/viewer.htm?doc=studies/windows/km/cpu/cx8.htm)
41  * )
42  * $(LI "Intel(R) Processor Identification and the CPUID Instruction, Application
43  *    Note 485" (2009).
44  * )
45  * )
46  *
47  * Bugs: Currently only works on x86 and Itanium CPUs.
48  *      Many processors have bugs in their microcode for the CPUID instruction,
49  *      so sometimes the cache information may be incorrect.
50  *
51  * Copyright: Copyright Don Clugston 2007 - 2009.
52  * License:   $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost License 1.0)
53  * Authors:   Don Clugston, Tomas Lindquist Olsen <tomas@famolsen.dk>
54  * Source:    $(DRUNTIMESRC core/_cpuid.d)
55  */
56 
57 module core.cpuid;
58 
59 version (GNU) version = GNU_OR_LDC;
60 version (LDC) version = GNU_OR_LDC;
61 
62 @trusted:
63 nothrow:
64 @nogc:
65 
66 // If optimizing for a particular processor, it is generally better
67 // to identify based on features rather than model. NOTE: Normally
68 // it's only worthwhile to optimise for the latest Intel and AMD CPU,
69 // with a backup for other CPUs.
70 // Pentium    -- preferPentium1()
71 // PMMX       --   + mmx()
72 // PPro       -- default
73 // PII        --   + mmx()
74 // PIII       --   + mmx() + sse()
75 // PentiumM   --   + mmx() + sse() + sse2()
76 // Pentium4   -- preferPentium4()
77 // PentiumD   --   + isX86_64()
78 // Core2      -- default + isX86_64()
79 // AMD K5     -- preferPentium1()
80 // AMD K6     --   + mmx()
81 // AMD K6-II  --   + mmx() + 3dnow()
82 // AMD K7     -- preferAthlon()
83 // AMD K8     --   + sse2()
84 // AMD K10    --   + isX86_64()
85 // Cyrix 6x86 -- preferPentium1()
86 //    6x86MX  --   + mmx()
87 
88 // GDC support uses extended inline assembly:
89 //   https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html        (general information and hints)
90 //   https://gcc.gnu.org/onlinedocs/gcc/Simple-Constraints.html  (binding variables to registers)
91 //   https://gcc.gnu.org/onlinedocs/gcc/Machine-Constraints.html (x86 specific register short names)
92 
93 public:
94 
95 /// Cache size and behaviour
96 struct CacheInfo
97 {
98     /// Size of the cache, in kilobytes, per CPU.
99     /// For L1 unified (data + code) caches, this size is half the physical size.
100     /// (we don't halve it for larger sizes, since normally
101     /// data size is much greater than code size for critical loops).
102     size_t size;
103     /// Number of ways of associativity, eg:
104     /// $(UL
105     /// $(LI 1 = direct mapped)
106     /// $(LI 2 = 2-way set associative)
107     /// $(LI 3 = 3-way set associative)
108     /// $(LI ubyte.max = fully associative)
109     /// )
110     ubyte associativity;
111     /// Number of bytes read into the cache when a cache miss occurs.
112     uint lineSize;
113 }
114 
115 public:
116     /// $(RED Scheduled for deprecation. Please use $(D dataCaches) instead.)
117     // Note: When we deprecate it, we simply make it private.
118     __gshared CacheInfo[5] datacache;
119 
120 @property pure
121 {
122     /// The data caches. If there are fewer than 5 physical caches levels,
123     /// the remaining levels are set to size_t.max (== entire memory space)
124     const(CacheInfo)[5] dataCaches() { return _dataCaches; }
125 
126     /// Returns vendor string, for display purposes only.
127     /// Do NOT use this to determine features!
128     /// Note that some CPUs have programmable vendorIDs.
129     string vendor()     {return _vendor;}
130     /// Returns processor string, for display purposes only
131     string processor()  {return _processor;}
132 
133     /// Does it have an x87 FPU on-chip?
134     bool x87onChip()    {return _x87onChip;}
135     /// Is MMX supported?
136     bool mmx()          {return _mmx;}
137     /// Is SSE supported?
138     bool sse()          {return _sse;}
139     /// Is SSE2 supported?
140     bool sse2()         {return _sse2;}
141     /// Is SSE3 supported?
142     bool sse3()         {return _sse3;}
143     /// Is SSSE3 supported?
144     bool ssse3()         {return _ssse3;}
145     /// Is SSE4.1 supported?
146     bool sse41()        {return _sse41;}
147     /// Is SSE4.2 supported?
148     bool sse42()        {return _sse42;}
149     /// Is SSE4a supported?
150     bool sse4a()        {return _sse4a;}
151     /// Is AES supported
152     bool aes()          {return _aes;}
153     /// Is pclmulqdq supported
154     bool hasPclmulqdq() {return _hasPclmulqdq;}
155     /// Is rdrand supported
156     bool hasRdrand()    {return _hasRdrand;}
157     /// Is AVX supported
158     bool avx()          {return _avx;}
159     /// Is VEX-Encoded AES supported
160     bool vaes()         {return _vaes;}
161     /// Is vpclmulqdq supported
162     bool hasVpclmulqdq(){return _hasVpclmulqdq; }
163     /// Is FMA supported
164     bool fma()          {return _fma;}
165     /// Is FP16C supported
166     bool fp16c()        {return _fp16c;}
167     /// Is AVX2 supported
168     bool avx2()         {return _avx2;}
169     /// Is HLE (hardware lock elision) supported
170     bool hle()          {return _hle;}
171     /// Is RTM (restricted transactional memory) supported
172     bool rtm()          {return _rtm;}
173     /// Is AVX512F supported
174     bool avx512f()      {return _avx512f;}
175     /// Is rdseed supported
176     bool hasRdseed()    {return _hasRdseed;}
177     /// Is SHA supported
178     bool hasSha()       {return _hasSha;}
179     /// Is AMD 3DNOW supported?
180     bool amd3dnow()     {return _amd3dnow;}
181     /// Is AMD 3DNOW Ext supported?
182     bool amd3dnowExt()  {return _amd3dnowExt;}
183     /// Are AMD extensions to MMX supported?
184     bool amdMmx()       {return _amdMmx;}
185     /// Is fxsave/fxrstor supported?
186     bool hasFxsr()          {return _hasFxsr;}
187     /// Is cmov supported?
188     bool hasCmov()          {return _hasCmov;}
189     /// Is rdtsc supported?
190     bool hasRdtsc()         {return _hasRdtsc;}
191     /// Is cmpxchg8b supported?
192     bool hasCmpxchg8b()     {return _hasCmpxchg8b;}
193     /// Is cmpxchg8b supported?
194     bool hasCmpxchg16b()    {return _hasCmpxchg16b;}
195     /// Is SYSENTER/SYSEXIT supported?
196     bool hasSysEnterSysExit() {return _hasSysEnterSysExit;}
197     /// Is 3DNow prefetch supported?
198     bool has3dnowPrefetch()   {return _has3dnowPrefetch;}
199     /// Are LAHF and SAHF supported in 64-bit mode?
200     bool hasLahfSahf()        {return _hasLahfSahf;}
201     /// Is POPCNT supported?
202     bool hasPopcnt()        {return _hasPopcnt;}
203     /// Is LZCNT supported?
204     bool hasLzcnt()         {return _hasLzcnt;}
205     /// Is this an Intel64 or AMD 64?
206     bool isX86_64()         {return _isX86_64;}
207 
208     /// Is this an IA64 (Itanium) processor?
209     bool isItanium()        { return _isItanium; }
210 
211     /// Is hyperthreading supported?
212     bool hyperThreading()   { return _hyperThreading; }
213     /// Returns number of threads per CPU
214     uint threadsPerCPU()    {return _threadsPerCPU;}
215     /// Returns number of cores in CPU
216     uint coresPerCPU()      {return _coresPerCPU;}
217 
218     /// Optimisation hints for assembly code.
219     ///
220     /// For forward compatibility, the CPU is compared against different
221     /// microarchitectures. For 32-bit x86, comparisons are made against
222     /// the Intel PPro/PII/PIII/PM family.
223     ///
224     /// The major 32-bit x86 microarchitecture 'dynasties' have been:
225     ///
226     /// $(UL
227     /// $(LI Intel P6 (PentiumPro, PII, PIII, PM, Core, Core2). )
228     /// $(LI AMD Athlon (K7, K8, K10). )
229     /// $(LI Intel NetBurst (Pentium 4, Pentium D). )
230     /// $(LI In-order Pentium (Pentium1, PMMX, Atom) )
231     /// )
232     ///
233     /// Other early CPUs (Nx586, AMD K5, K6, Centaur C3, Transmeta,
234     /// Cyrix, Rise) were mostly in-order.
235     ///
236     /// Some new processors do not fit into the existing categories:
237     ///
238     /// $(UL
239     /// $(LI Intel Atom 230/330 (family 6, model 0x1C) is an in-order core. )
240     /// $(LI Centaur Isiah = VIA Nano (family 6, model F) is an out-of-order core. )
241     /// )
242     ///
243     /// Within each dynasty, the optimisation techniques are largely
244     /// identical (eg, use instruction pairing for group 4). Major
245     /// instruction set improvements occur within each dynasty.
246 
247     /// Does this CPU perform better on AMD K7 code than PentiumPro..Core2 code?
248     bool preferAthlon() { return _preferAthlon; }
249     /// Does this CPU perform better on Pentium4 code than PentiumPro..Core2 code?
250     bool preferPentium4() { return _preferPentium4; }
251     /// Does this CPU perform better on Pentium I code than Pentium Pro code?
252     bool preferPentium1() { return _preferPentium1; }
253 }
254 
255 private immutable
256 {
257     /* These exist as immutables so that the query property functions can
258      * be backwards compatible with code that called them with ().
259      * Also, immutables can only be set by the static this().
260      */
261     const(CacheInfo)[5] _dataCaches;
262     string _vendor;
263     string _processor;
264     bool _x87onChip;
265     bool _mmx;
266     bool _sse;
267     bool _sse2;
268     bool _sse3;
269     bool _ssse3;
270     bool _sse41;
271     bool _sse42;
272     bool _sse4a;
273     bool _aes;
274     bool _hasPclmulqdq;
275     bool _hasRdrand;
276     bool _avx;
277     bool _vaes;
278     bool _hasVpclmulqdq;
279     bool _fma;
280     bool _fp16c;
281     bool _avx2;
282     bool _hle;
283     bool _rtm;
284     bool _avx512f;
285     bool _hasRdseed;
286     bool _hasSha;
287     bool _amd3dnow;
288     bool _amd3dnowExt;
289     bool _amdMmx;
290     bool _hasFxsr;
291     bool _hasCmov;
292     bool _hasRdtsc;
293     bool _hasCmpxchg8b;
294     bool _hasCmpxchg16b;
295     bool _hasSysEnterSysExit;
296     bool _has3dnowPrefetch;
297     bool _hasLahfSahf;
298     bool _hasPopcnt;
299     bool _hasLzcnt;
300     bool _isX86_64;
301     bool _isItanium;
302     bool _hyperThreading;
303     uint _threadsPerCPU;
304     uint _coresPerCPU;
305     bool _preferAthlon;
306     bool _preferPentium4;
307     bool _preferPentium1;
308 }
309 
310 __gshared:
311     // All these values are set only once, and never subsequently modified.
312 public:
313     /// $(RED Warning: This field will be turned into a property in a future release.)
314     ///
315     /// Processor type (vendor-dependent).
316     /// This should be visible ONLY for display purposes.
317     uint stepping, model, family;
318     /// $(RED This field has been deprecated. Please use $(D cacheLevels) instead.)
319     uint numCacheLevels = 1;
320     /// The number of cache levels in the CPU.
321     @property uint cacheLevels() { return numCacheLevels; }
322 private:
323 
324 struct CpuFeatures
325 {
326     bool probablyIntel; // true = _probably_ an Intel processor, might be faking
327     bool probablyAMD; // true = _probably_ an AMD or Hygon processor
328     string processorName;
329     char [12] vendorID = 0;
330     char [48] processorNameBuffer = 0;
331     uint features = 0;     // mmx, sse, sse2, hyperthreading, etc
332     uint miscfeatures = 0; // sse3, etc.
333     uint extfeatures = 0;  // HLE, AVX2, RTM, etc.
334     uint amdfeatures = 0;  // 3DNow!, mmxext, etc
335     uint amdmiscfeatures = 0; // sse4a, sse5, svm, etc
336     ulong xfeatures = 0;   // XFEATURES_ENABLED_MASK
337     uint maxCores = 1;
338     uint maxThreads = 1;
339 }
340 
341 CpuFeatures cpuFeatures;
342 
343 /* Hide from the optimizer where cf (a register) is coming from, so that
344  * cf doesn't get "optimized away". The idea is to  reference
345  * the global data through cf so not so many fixups are inserted
346  * into the executable image.
347  */
348 CpuFeatures* getCpuFeatures() @nogc nothrow
349 {
350     pragma(inline, false);
351     return &cpuFeatures;
352 }
353 
354     // Note that this may indicate multi-core rather than hyperthreading.
355     @property bool hyperThreadingBit()    { return (cpuFeatures.features&HTT_BIT)!=0;}
356 
357     // feature flags CPUID1_EDX
358     enum : uint
359     {
360         FPU_BIT = 1,
361         TIMESTAMP_BIT = 1<<4, // rdtsc
362         MDSR_BIT = 1<<5,      // RDMSR/WRMSR
363         CMPXCHG8B_BIT = 1<<8,
364         SYSENTERSYSEXIT_BIT = 1<<11,
365         CMOV_BIT = 1<<15,
366         MMX_BIT = 1<<23,
367         FXSR_BIT = 1<<24,
368         SSE_BIT = 1<<25,
369         SSE2_BIT = 1<<26,
370         HTT_BIT = 1<<28,
371         IA64_BIT = 1<<30
372     }
373     // feature flags misc CPUID1_ECX
374     enum : uint
375     {
376         SSE3_BIT = 1,
377         PCLMULQDQ_BIT = 1<<1, // from AVX
378         MWAIT_BIT = 1<<3,
379         SSSE3_BIT = 1<<9,
380         FMA_BIT = 1<<12,     // from AVX
381         CMPXCHG16B_BIT = 1<<13,
382         SSE41_BIT = 1<<19,
383         SSE42_BIT = 1<<20,
384         POPCNT_BIT = 1<<23,
385         AES_BIT = 1<<25, // AES instructions from AVX
386         OSXSAVE_BIT = 1<<27, // Used for AVX
387         AVX_BIT = 1<<28,
388         FP16C_BIT = 1<<29,
389         RDRAND_BIT = 1<<30,
390     }
391     // Feature flags for cpuid.{EAX = 7, ECX = 0}.EBX.
392     enum : uint
393     {
394         FSGSBASE_BIT = 1 << 0,
395         SGX_BIT = 1 << 2,
396         BMI1_BIT = 1 << 3,
397         HLE_BIT = 1 << 4,
398         AVX2_BIT = 1 << 5,
399         SMEP_BIT = 1 << 7,
400         BMI2_BIT = 1 << 8,
401         ERMS_BIT = 1 << 9,
402         INVPCID_BIT = 1 << 10,
403         RTM_BIT = 1 << 11,
404         AVX512F_BIT = 1 << 16,
405         AVX512DQ_BIT = 1 << 17,
406         RDSEED_BIT = 1 << 18,
407         ADX_BIT = 1 << 19,
408         AVX512IFMA_BIT = 1 << 21,
409         CLFLUSHOPT_BIT = 1 << 23,
410         CLWB_BIT = 1 << 24,
411         AVX512PF_BIT = 1 << 26,
412         AVX512ER_BIT = 1 << 27,
413         AVX512CD_BIT = 1 << 28,
414         SHA_BIT = 1 << 29,
415         AVX512BW_BIT = 1 << 30,
416         AVX512VL_BIT = 1 << 31,
417     }
418     // feature flags XFEATURES_ENABLED_MASK
419     enum : ulong
420     {
421         XF_FP_BIT  = 0x1,
422         XF_SSE_BIT = 0x2,
423         XF_YMM_BIT = 0x4,
424     }
425     // AMD feature flags CPUID80000001_EDX
426     enum : uint
427     {
428         AMD_MMX_BIT = 1<<22,
429 //      FXR_OR_CYRIXMMX_BIT = 1<<24, // Cyrix/NS: 6x86MMX instructions.
430         FFXSR_BIT = 1<<25,
431         PAGE1GB_BIT = 1<<26, // support for 1GB pages
432         RDTSCP_BIT = 1<<27,
433         AMD64_BIT = 1<<29,
434         AMD_3DNOW_EXT_BIT = 1<<30,
435         AMD_3DNOW_BIT = 1<<31
436     }
437     // AMD misc feature flags CPUID80000001_ECX
438     enum : uint
439     {
440         LAHFSAHF_BIT = 1,
441         LZCNT_BIT = 1<<5,
442         SSE4A_BIT = 1<<6,
443         AMD_3DNOW_PREFETCH_BIT = 1<<8,
444     }
445 
446 
447 version (GNU_OR_LDC) {
448     version (X86)
449         enum supportedX86 = true;
450     else version (X86_64)
451         enum supportedX86 = true;
452     else
453         enum supportedX86 = false;
454 } else version (D_InlineAsm_X86) {
455     enum supportedX86 = true;
456 } else version (D_InlineAsm_X86_64) {
457     enum supportedX86 = true;
458 } else {
459     enum supportedX86 = false;
460 }
461 
462 static if (supportedX86) {
463 // Note that this code will also work for Itanium in x86 mode.
464 
465 __gshared uint max_cpuid, max_extended_cpuid;
466 
467 // CPUID2: "cache and tlb information"
468 void getcacheinfoCPUID2()
469 {
470     // We are only interested in the data caches
471     void decipherCpuid2(ubyte x) @nogc nothrow {
472         if (x==0) return;
473         // Values from http://www.sandpile.org/ia32/cpuid.htm.
474         // Includes Itanium and non-Intel CPUs.
475         //
476         static immutable ubyte [63] ids = [
477             0x0A, 0x0C, 0x0D, 0x2C, 0x60, 0x0E, 0x66, 0x67, 0x68,
478             // level 2 cache
479             0x41, 0x42, 0x43, 0x44, 0x45, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7F,
480             0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x49, 0x4E,
481             0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x48, 0x80, 0x81,
482             // level 3 cache
483             0x22, 0x23, 0x25, 0x29, 0x46, 0x47, 0x4A, 0x4B, 0x4C, 0x4D,
484 
485             0xD0, 0xD1, 0xD2, 0xD6, 0xD7, 0xD8, 0xDC, 0xDD, 0xDE,
486             0xE2, 0xE3, 0xE4, 0xEA, 0xEB, 0xEC
487         ];
488         static immutable uint [63] sizes = [
489             8, 16, 16, 64, 16, 24, 8, 16, 32,
490             128, 256, 512, 1024, 2048, 1024, 128, 256, 512, 1024, 2048, 512,
491             256, 512, 1024, 2048, 512, 1024, 4096, 6*1024,
492             128, 192, 128, 256, 384, 512, 3072, 512, 128,
493             512, 1024, 2048, 4096, 4096, 8192, 6*1024, 8192, 12*1024, 16*1024,
494 
495             512, 1024, 2048, 1024, 2048, 4096, 1024+512, 3*1024, 6*1024,
496             2*1024, 4*1024, 8*1024, 12*1024, 28*1024, 24*1024
497         ];
498     // CPUBUG: Pentium M reports 0x2C but tests show it is only 4-way associative
499         static immutable ubyte [63] ways = [
500             2, 4, 4, 8, 8, 6, 4, 4, 4,
501             4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 2,
502             8, 8, 8, 8, 4, 8, 16, 24,
503             4, 6, 2, 4, 6, 4, 12, 8, 8,
504             4, 8, 8, 8, 4, 8, 12, 16, 12, 16,
505             4, 4, 4, 8, 8, 8, 12, 12, 12,
506             16, 16, 16, 24, 24, 24
507         ];
508         enum { FIRSTDATA2 = 8, FIRSTDATA3 = 28+9 }
509         for (size_t i=0; i< ids.length; ++i) {
510             if (x==ids[i]) {
511                 int level = i< FIRSTDATA2 ? 0: i<FIRSTDATA3 ? 1 : 2;
512                 if (x==0x49 && family==0xF && model==0x6) level=2;
513                 datacache[level].size=sizes[i];
514                 datacache[level].associativity=ways[i];
515                 if (level == 3 || x==0x2C || x==0x0D || (x>=0x48 && x<=0x80)
516                                    || x==0x86 || x==0x87
517                                    || (x>=0x66 && x<=0x68) || (x>=0x39 && x<=0x3E)){
518                     datacache[level].lineSize = 64;
519                 } else datacache[level].lineSize = 32;
520             }
521         }
522     }
523 
524     uint[4] a;
525     bool firstTime = true;
526     // On a multi-core system, this could theoretically fail, but it's only used
527     // for old single-core CPUs.
528     uint numinfos = 1;
529     do {
530         version (GNU_OR_LDC) asm pure nothrow @nogc {
531             "cpuid" : "=a" (a[0]), "=b" (a[1]), "=c" (a[2]), "=d" (a[3]) : "a" (2);
532         } else asm pure nothrow @nogc {
533             mov EAX, 2;
534             cpuid;
535             mov a+0, EAX;
536             mov a+4, EBX;
537             mov a+8, ECX;
538             mov a+12, EDX;
539         }
540         if (firstTime) {
541             if (a[0]==0x0000_7001 && a[3]==0x80 && a[1]==0 && a[2]==0) {
542         // Cyrix MediaGX MMXEnhanced returns: EAX= 00007001, EDX=00000080.
543         // These are NOT standard Intel values
544         // (TLB = 32 entry, 4 way associative, 4K pages)
545         // (L1 cache = 16K, 4way, linesize16)
546                 datacache[0].size=8;
547                 datacache[0].associativity=4;
548                 datacache[0].lineSize=16;
549                 return;
550             }
551             // lsb of a is how many times to loop.
552             numinfos = a[0] & 0xFF;
553             // and otherwise it should be ignored
554             a[0] &= 0xFFFF_FF00;
555             firstTime = false;
556         }
557         for (int c=0; c<4;++c) {
558             // high bit set == no info.
559             if (a[c] & 0x8000_0000) continue;
560             decipherCpuid2(cast(ubyte)(a[c] & 0xFF));
561             decipherCpuid2(cast(ubyte)((a[c]>>8) & 0xFF));
562             decipherCpuid2(cast(ubyte)((a[c]>>16) & 0xFF));
563             decipherCpuid2(cast(ubyte)((a[c]>>24) & 0xFF));
564         }
565     } while (--numinfos);
566 }
567 
568 // CPUID4: "Deterministic cache parameters" leaf
569 void getcacheinfoCPUID4()
570 {
571     int cachenum = 0;
572     for (;;) {
573         uint a, b, number_of_sets;
574         version (GNU_OR_LDC) asm pure nothrow @nogc {
575             "cpuid" : "=a" (a), "=b" (b), "=c" (number_of_sets) : "a" (4), "c" (cachenum) : "edx";
576         } else asm pure nothrow @nogc {
577             mov EAX, 4;
578             mov ECX, cachenum;
579             cpuid;
580             mov a, EAX;
581             mov b, EBX;
582             mov number_of_sets, ECX;
583         }
584         ++cachenum;
585         if ((a&0x1F)==0) break; // no more caches
586         immutable uint numthreads = ((a>>14) & 0xFFF)  + 1;
587         immutable uint numcores = ((a>>26) & 0x3F) + 1;
588         if (numcores > cpuFeatures.maxCores) cpuFeatures.maxCores = numcores;
589         if ((a&0x1F)!=1 && ((a&0x1F)!=3)) continue; // we only want data & unified caches
590 
591         ++number_of_sets;
592         immutable ubyte level = cast(ubyte)(((a>>5)&7)-1);
593         if (level > datacache.length) continue; // ignore deep caches
594         datacache[level].associativity = a & 0x200 ? ubyte.max :cast(ubyte)((b>>22)+1);
595         datacache[level].lineSize = (b & 0xFFF)+ 1; // system coherency line size
596         immutable uint line_partitions = ((b >> 12)& 0x3FF) + 1;
597         // Size = number of sets * associativity * cachelinesize * linepartitions
598         // and must convert to Kb, also dividing by the number of hyperthreads using this cache.
599         immutable ulong sz = (datacache[level].associativity< ubyte.max)? number_of_sets *
600             datacache[level].associativity : number_of_sets;
601         datacache[level].size = cast(size_t)(
602                 (sz * datacache[level].lineSize * line_partitions ) / (numthreads *1024));
603         if (level == 0 && (a&0xF)==3) {
604             // Halve the size for unified L1 caches
605             datacache[level].size/=2;
606         }
607     }
608 }
609 
610 // CPUID8000_0005 & 6
611 void getAMDcacheinfo()
612 {
613     uint dummy, c5, c6, d6;
614     version (GNU_OR_LDC) asm pure nothrow @nogc {
615         "cpuid" : "=a" (dummy), "=c" (c5) : "a" (0x8000_0005) : "ebx", "edx";
616     } else asm pure nothrow @nogc {
617         mov EAX, 0x8000_0005; // L1 cache
618         cpuid;
619         // EAX has L1_TLB_4M.
620         // EBX has L1_TLB_4K
621         // EDX has L1 instruction cache
622         mov c5, ECX;
623     }
624 
625     datacache[0].size = ( (c5>>24) & 0xFF);
626     datacache[0].associativity = cast(ubyte)( (c5 >> 16) & 0xFF);
627     datacache[0].lineSize = c5 & 0xFF;
628 
629     if (max_extended_cpuid >= 0x8000_0006) {
630         // AMD K6-III or K6-2+ or later.
631         uint numcores = 1;
632         if (max_extended_cpuid >= 0x8000_0008) {
633             // read the number of physical cores (minus 1) from the 8 lowest ECX bits
634             version (GNU_OR_LDC) asm pure nothrow @nogc {
635                 "cpuid" : "=a" (dummy), "=c" (numcores) : "a" (0x8000_0008) : "ebx", "edx";
636             } else asm pure nothrow @nogc {
637                 mov EAX, 0x8000_0008;
638                 cpuid;
639                 mov numcores, ECX;
640             }
641             numcores = (numcores & 0xFF) + 1;
642             if (numcores>cpuFeatures.maxCores) cpuFeatures.maxCores = numcores;
643         }
644 
645         version (GNU_OR_LDC) asm pure nothrow @nogc {
646             "cpuid" : "=a" (dummy), "=c" (c6), "=d" (d6) : "a" (0x8000_0006) : "ebx";
647         } else asm pure nothrow @nogc {
648             mov EAX, 0x8000_0006; // L2/L3 cache
649             cpuid;
650             mov c6, ECX; // L2 cache info
651             mov d6, EDX; // L3 cache info
652         }
653 
654         static immutable ubyte [] assocmap = [ 0, 1, 2, 0, 4, 0, 8, 0, 16, 0, 32, 48, 64, 96, 128, 0xFF ];
655         datacache[1].size = (c6>>16) & 0xFFFF;
656         datacache[1].associativity = assocmap[(c6>>12)&0xF];
657         datacache[1].lineSize = c6 & 0xFF;
658 
659         // The L3 cache value is TOTAL, not per core.
660         datacache[2].size = ((d6>>18)*512)/numcores; // could be up to 2 * this, -1.
661         datacache[2].associativity = assocmap[(d6>>12)&0xF];
662         datacache[2].lineSize = d6 & 0xFF;
663     }
664 }
665 
666 // For Intel CoreI7 and later, use function 0x0B
667 // to determine number of processors.
668 void getCpuInfo0B()
669 {
670     int threadsPerCore;
671     uint a, b, c, d;
672     // I'm not sure about this. The docs state that there
673     // are 2 hyperthreads per core if HT is factory enabled.
674     for (int level = 0; level < 2; level++)
675     {
676         version (GNU_OR_LDC) asm pure nothrow @nogc {
677             "cpuid" : "=a" (a), "=b" (b), "=c" (c), "=d" (d) : "a" (0x0B), "c" (level);
678         } else asm pure nothrow @nogc {
679             mov EAX, 0x0B;
680             mov ECX, level;
681             cpuid;
682             mov a, EAX;
683             mov b, EBX;
684             mov c, ECX;
685             mov d, EDX;
686         }
687         if (b != 0)
688         {
689             if (level == 0)
690                 threadsPerCore = b & 0xFFFF;
691             else if (level == 1)
692             {
693                 cpuFeatures.maxThreads = b & 0xFFFF;
694                 cpuFeatures.maxCores = cpuFeatures.maxThreads / threadsPerCore;
695             }
696         }
697         // Got "invalid domain" returned from cpuid
698         if (a == 0 && b == 0)
699             break;
700     }
701 }
702 
703 void cpuidX86()
704 {
705     auto cf = getCpuFeatures();
706 
707     uint a, b, c, d;
708     uint* venptr = cast(uint*)cf.vendorID.ptr;
709     version (GNU_OR_LDC)
710     {
711         asm pure nothrow @nogc {
712             "cpuid" : "=a" (max_cpuid), "=b" (venptr[0]), "=d" (venptr[1]), "=c" (venptr[2]) : "a" (0);
713             "cpuid" : "=a" (max_extended_cpuid) : "a" (0x8000_0000) : "ebx", "ecx", "edx";
714         }
715     }
716     else
717     {
718         uint a2;
719         version (D_InlineAsm_X86)
720         {
721             asm pure nothrow @nogc {
722                 mov EAX, 0;
723                 cpuid;
724                 mov a, EAX;
725                 mov EAX, venptr;
726                 mov [EAX], EBX;
727                 mov [EAX + 4], EDX;
728                 mov [EAX + 8], ECX;
729             }
730         }
731         else version (D_InlineAsm_X86_64)
732         {
733             asm pure nothrow @nogc {
734                 mov EAX, 0;
735                 cpuid;
736                 mov a, EAX;
737                 mov RAX, venptr;
738                 mov [RAX], EBX;
739                 mov [RAX + 4], EDX;
740                 mov [RAX + 8], ECX;
741             }
742         }
743         asm pure nothrow @nogc {
744             mov EAX, 0x8000_0000;
745             cpuid;
746             mov a2, EAX;
747         }
748         max_cpuid = a;
749         max_extended_cpuid = a2;
750     }
751 
752 
753     cf.probablyIntel = cf.vendorID == "GenuineIntel";
754     cf.probablyAMD = (cf.vendorID == "AuthenticAMD" || cf.vendorID == "HygonGenuine");
755     uint apic = 0; // brand index, apic id
756     version (GNU_OR_LDC) asm pure nothrow @nogc {
757         "cpuid" : "=a" (a), "=b" (apic), "=c" (cf.miscfeatures), "=d" (cf.features) : "a" (1);
758     } else {
759         asm pure nothrow @nogc {
760             mov EAX, 1; // model, stepping
761             cpuid;
762             mov a, EAX;
763             mov apic, EBX;
764             mov c, ECX;
765             mov d, EDX;
766         }
767         cf.features = d;
768         cf.miscfeatures = c;
769     }
770     stepping = a & 0xF;
771     immutable uint fbase = (a >> 8) & 0xF;
772     immutable uint mbase = (a >> 4) & 0xF;
773     family = ((fbase == 0xF) || (fbase == 0)) ? fbase + (a >> 20) & 0xFF : fbase;
774     model = ((fbase == 0xF) || (fbase == 6 && cf.probablyIntel) ) ?
775          mbase + ((a >> 12) & 0xF0) : mbase;
776 
777     if (max_cpuid >= 7)
778     {
779         version (GNU_OR_LDC) asm pure nothrow @nogc {
780             "cpuid" : "=a" (a), "=b" (cf.extfeatures), "=c" (c) : "a" (7), "c" (0) : "edx";
781         } else {
782             uint ext;
783             asm pure nothrow @nogc {
784                 mov EAX, 7; // Structured extended feature leaf.
785                 mov ECX, 0; // Main leaf.
786                 cpuid;
787                 mov ext, EBX; // HLE, AVX2, RTM, etc.
788             }
789             cf.extfeatures = ext;
790         }
791     }
792 
793     if (cf.miscfeatures & OSXSAVE_BIT)
794     {
795         version (GNU_OR_LDC) asm pure nothrow @nogc {
796             /* Old assemblers do not recognize xgetbv, and there is no easy way
797              * to conditionally compile based on the assembler used, so use the
798              * raw .byte sequence instead.  */
799             ".byte 0x0f, 0x01, 0xd0" : "=a" (a), "=d" (d) : "c" (0);
800         } else asm pure nothrow @nogc {
801             mov ECX, 0;
802             xgetbv;
803             mov d, EDX;
804             mov a, EAX;
805         }
806         cf.xfeatures = cast(ulong)d << 32 | a;
807     }
808 
809     cf.amdfeatures = 0;
810     cf.amdmiscfeatures = 0;
811     if (max_extended_cpuid >= 0x8000_0001) {
812         version (GNU_OR_LDC) asm pure nothrow @nogc {
813             "cpuid" : "=a" (a), "=c" (cf.amdmiscfeatures), "=d" (cf.amdfeatures) : "a" (0x8000_0001) : "ebx";
814         } else {
815             asm pure nothrow @nogc {
816                 mov EAX, 0x8000_0001;
817                 cpuid;
818                 mov c, ECX;
819                 mov d, EDX;
820             }
821             cf.amdmiscfeatures = c;
822             cf.amdfeatures = d;
823         }
824     }
825     // Try to detect fraudulent vendorIDs
826     if (amd3dnow) cf.probablyIntel = false;
827 
828     if (!cf.probablyIntel && max_extended_cpuid >= 0x8000_0008) {
829         //http://support.amd.com/TechDocs/25481.pdf pg.36
830         cf.maxCores = 1;
831         if (hyperThreadingBit) {
832             // determine max number of cores for AMD
833             version (GNU_OR_LDC) asm pure nothrow @nogc {
834                 "cpuid" : "=a" (a), "=c" (c) : "a" (0x8000_0008) : "ebx", "edx";
835             } else asm pure nothrow @nogc {
836                 mov EAX, 0x8000_0008;
837                 cpuid;
838                 mov c, ECX;
839             }
840             cf.maxCores += c & 0xFF;
841         }
842     }
843 
844     if (max_extended_cpuid >= 0x8000_0004) {
845         uint* pnb = cast(uint*)cf.processorNameBuffer.ptr;
846         version (GNU_OR_LDC)
847         {
848             asm pure nothrow @nogc {
849                 "cpuid" : "=a" (pnb[0]), "=b" (pnb[1]), "=c" (pnb[ 2]), "=d" (pnb[ 3]) : "a" (0x8000_0002);
850                 "cpuid" : "=a" (pnb[4]), "=b" (pnb[5]), "=c" (pnb[ 6]), "=d" (pnb[ 7]) : "a" (0x8000_0003);
851                 "cpuid" : "=a" (pnb[8]), "=b" (pnb[9]), "=c" (pnb[10]), "=d" (pnb[11]) : "a" (0x8000_0004);
852             }
853         }
854         else version (D_InlineAsm_X86)
855         {
856             asm pure nothrow @nogc {
857                 push ESI;
858                 mov ESI, pnb;
859                 mov EAX, 0x8000_0002;
860                 cpuid;
861                 mov [ESI], EAX;
862                 mov [ESI+4], EBX;
863                 mov [ESI+8], ECX;
864                 mov [ESI+12], EDX;
865                 mov EAX, 0x8000_0003;
866                 cpuid;
867                 mov [ESI+16], EAX;
868                 mov [ESI+20], EBX;
869                 mov [ESI+24], ECX;
870                 mov [ESI+28], EDX;
871                 mov EAX, 0x8000_0004;
872                 cpuid;
873                 mov [ESI+32], EAX;
874                 mov [ESI+36], EBX;
875                 mov [ESI+40], ECX;
876                 mov [ESI+44], EDX;
877                 pop ESI;
878             }
879         }
880         else version (D_InlineAsm_X86_64)
881         {
882             asm pure nothrow @nogc {
883                 push RSI;
884                 mov RSI, pnb;
885                 mov EAX, 0x8000_0002;
886                 cpuid;
887                 mov [RSI], EAX;
888                 mov [RSI+4], EBX;
889                 mov [RSI+8], ECX;
890                 mov [RSI+12], EDX;
891                 mov EAX, 0x8000_0003;
892                 cpuid;
893                 mov [RSI+16], EAX;
894                 mov [RSI+20], EBX;
895                 mov [RSI+24], ECX;
896                 mov [RSI+28], EDX;
897                 mov EAX, 0x8000_0004;
898                 cpuid;
899                 mov [RSI+32], EAX;
900                 mov [RSI+36], EBX;
901                 mov [RSI+40], ECX;
902                 mov [RSI+44], EDX;
903                 pop RSI;
904             }
905         }
906         // Intel P4 and PM pad at front with spaces.
907         // Other CPUs pad at end with nulls.
908         int start = 0, end = 0;
909         while (cf.processorNameBuffer[start] == ' ') { ++start; }
910         while (cf.processorNameBuffer[cf.processorNameBuffer.length-end-1] == 0) { ++end; }
911         cf.processorName = cast(string)(cf.processorNameBuffer[start..$-end]);
912     } else {
913         cf.processorName = "Unknown CPU";
914     }
915     // Determine cache sizes
916 
917     // Intel docs specify that they return 0 for 0x8000_0005.
918     // AMD docs do not specify the behaviour for 0004 and 0002.
919     // Centaur/VIA and most other manufacturers use the AMD method,
920     // except Cyrix MediaGX MMX Enhanced uses their OWN form of CPUID2!
921     // NS Geode GX1 provides CyrixCPUID2 _and_ does the same wrong behaviour
922     // for CPUID80000005. But Geode GX uses the AMD method
923 
924     // Deal with Geode GX1 - make it same as MediaGX MMX.
925     if (max_extended_cpuid==0x8000_0005 && max_cpuid==2) {
926         max_extended_cpuid = 0x8000_0004;
927     }
928     // Therefore, we try the AMD method unless it's an Intel chip.
929     // If we still have no info, try the Intel methods.
930     datacache[0].size = 0;
931     if (max_cpuid<2 || !cf.probablyIntel) {
932         if (max_extended_cpuid >= 0x8000_0005) {
933             getAMDcacheinfo();
934         } else if (cf.probablyAMD) {
935             // According to AMDProcRecognitionAppNote, this means CPU
936             // K5 model 0, or Am5x86 (model 4), or Am4x86DX4 (model 4)
937             // Am5x86 has 16Kb 4-way unified data & code cache.
938             datacache[0].size = 8;
939             datacache[0].associativity = 4;
940             datacache[0].lineSize = 32;
941         } else {
942             // Some obscure CPU.
943             // Values for Cyrix 6x86MX (family 6, model 0)
944             datacache[0].size = 64;
945             datacache[0].associativity = 4;
946             datacache[0].lineSize = 32;
947         }
948     }
949     if ((datacache[0].size == 0) && max_cpuid>=4) {
950         getcacheinfoCPUID4();
951     }
952     if ((datacache[0].size == 0) && max_cpuid>=2) {
953         getcacheinfoCPUID2();
954     }
955     if (datacache[0].size == 0) {
956         // Pentium, PMMX, late model 486, or an obscure CPU
957         if (mmx) { // Pentium MMX. Also has 8kB code cache.
958             datacache[0].size = 16;
959             datacache[0].associativity = 4;
960             datacache[0].lineSize = 32;
961         } else { // Pentium 1 (which also has 8kB code cache)
962                  // or 486.
963             // Cyrix 6x86: 16, 4way, 32 linesize
964             datacache[0].size = 8;
965             datacache[0].associativity = 2;
966             datacache[0].lineSize = 32;
967         }
968     }
969     if (cf.probablyIntel && max_cpuid >= 0x0B) {
970         // For Intel i7 and later, use function 0x0B to determine
971         // cores and hyperthreads.
972         getCpuInfo0B();
973     } else {
974         if (hyperThreadingBit) cf.maxThreads = (apic>>>16) & 0xFF;
975         else cf.maxThreads = cf.maxCores;
976 
977         if (cf.probablyAMD && max_extended_cpuid >= 0x8000_001E) {
978             version (GNU_OR_LDC) asm pure nothrow @nogc {
979                 "cpuid" : "=a" (a), "=b" (b) : "a" (0x8000_001E) : "ecx", "edx";
980             } else {
981                 asm pure nothrow @nogc {
982                     mov EAX, 0x8000_001e;
983                     cpuid;
984                     mov b, EBX;
985                 }
986             }
987             ubyte coresPerComputeUnit = ((b >> 8) & 3) + 1;
988             cf.maxCores = cf.maxThreads / coresPerComputeUnit;
989         }
990     }
991 }
992 
993 // Return true if the cpuid instruction is supported.
994 // BUG(WONTFIX): Returns false for Cyrix 6x86 and 6x86L. They will be treated as 486 machines.
995 bool hasCPUID()
996 {
997     version (X86_64)
998         return true;
999     else
1000     {
1001         uint flags;
1002         version (GNU_OR_LDC)
1003         {
1004             // http://wiki.osdev.org/CPUID#Checking_CPUID_availability
1005             asm nothrow @nogc { "
1006                 pushfl                    # Save EFLAGS
1007                 pushfl                    # Store EFLAGS
1008                 xorl $0x00200000, (%%esp) # Invert the ID bit in stored EFLAGS
1009                 popfl                     # Load stored EFLAGS (with ID bit inverted)
1010                 pushfl                    # Store EFLAGS again (ID bit may or may not be inverted)
1011                 popl %%eax                # eax = modified EFLAGS (ID bit may or may not be inverted)
1012                 xorl (%%esp), %%eax       # eax = whichever bits were changed
1013                 popfl                     # Restore original EFLAGS
1014                 " : "=a" (flags);
1015             }
1016         }
1017         else version (D_InlineAsm_X86)
1018         {
1019             asm nothrow @nogc {
1020                 pushfd;
1021                 pop EAX;
1022                 mov flags, EAX;
1023                 xor EAX, 0x0020_0000;
1024                 push EAX;
1025                 popfd;
1026                 pushfd;
1027                 pop EAX;
1028                 xor flags, EAX;
1029             }
1030         }
1031         return (flags & 0x0020_0000) != 0;
1032     }
1033 }
1034 
1035 } else { // supported X86
1036 
1037     bool hasCPUID() { return false; }
1038 
1039     void cpuidX86()
1040     {
1041             datacache[0].size = 8;
1042             datacache[0].associativity = 2;
1043             datacache[0].lineSize = 32;
1044     }
1045 }
1046 
1047 /*
1048 // TODO: Implement this function with OS support
1049 void cpuidPPC()
1050 {
1051     enum :int  { PPC601, PPC603, PPC603E, PPC604,
1052                  PPC604E, PPC620, PPCG3, PPCG4, PPCG5 }
1053 
1054     // TODO:
1055     // asm { mfpvr; } returns the CPU version but unfortunately it can
1056     // only be used in kernel mode. So OS support is required.
1057     int cputype = PPC603;
1058 
1059     // 601 has a 8KB combined data & code L1 cache.
1060     uint sizes[] = [4, 8, 16, 16, 32, 32, 32, 32, 64];
1061     ubyte ways[] = [8, 2,  4,  4,  4,  8,  8,  8,  8];
1062     uint L2size[]= [0, 0,  0,  0,  0,  0,  0,  256,  512];
1063     uint L3size[]= [0, 0,  0,  0,  0,  0,  0,  2048,  0];
1064 
1065     datacache[0].size = sizes[cputype];
1066     datacache[0].associativity = ways[cputype];
1067     datacache[0].lineSize = (cputype==PPCG5)? 128 :
1068         (cputype == PPC620 || cputype == PPCG3)? 64 : 32;
1069     datacache[1].size = L2size[cputype];
1070     datacache[2].size = L3size[cputype];
1071     datacache[1].lineSize = datacache[0].lineSize;
1072     datacache[2].lineSize = datacache[0].lineSize;
1073 }
1074 
1075 // TODO: Implement this function with OS support
1076 void cpuidSparc()
1077 {
1078     // UltaSparcIIi  : L1 = 16,  2way. L2 = 512, 4 way.
1079     // UltraSparcIII : L1 = 64,  4way. L2= 4096 or 8192.
1080     // UltraSparcIIIi: L1 = 64,  4way. L2= 1024, 4 way
1081     // UltraSparcIV  : L1 = 64,  4way. L2 = 16*1024.
1082     // UltraSparcIV+ : L1 = 64,  4way. L2 = 2048, L3=32*1024.
1083     // Sparc64V      : L1 = 128, 2way. L2 = 4096 4way.
1084 }
1085 */
1086 
1087 pragma(crt_constructor) void cpuid_initialization()
1088 {
1089     auto cf = getCpuFeatures();
1090 
1091     if (hasCPUID()) {
1092         cpuidX86();
1093     } else {
1094         // it's a 386 or 486, or a Cyrix 6x86.
1095         //Probably still has an external cache.
1096     }
1097     if (datacache[0].size==0) {
1098             // Guess same as Pentium 1.
1099             datacache[0].size = 8;
1100             datacache[0].associativity = 2;
1101             datacache[0].lineSize = 32;
1102     }
1103     numCacheLevels = 1;
1104     // And now fill up all the unused levels with full memory space.
1105     for (size_t i=1; i< datacache.length; ++i) {
1106         if (datacache[i].size==0) {
1107             // Set all remaining levels of cache equal to full address space.
1108             datacache[i].size = size_t.max/1024;
1109             datacache[i].associativity = 1;
1110             datacache[i].lineSize = datacache[i-1].lineSize;
1111         }
1112         else
1113             ++numCacheLevels;
1114     }
1115 
1116     // Set the immortals
1117 
1118     _dataCaches =     datacache;
1119     _vendor =         cast(string)cf.vendorID;
1120     _processor =      cf.processorName;
1121     _x87onChip =      (cf.features&FPU_BIT)!=0;
1122     _mmx =            (cf.features&MMX_BIT)!=0;
1123     _sse =            (cf.features&SSE_BIT)!=0;
1124     _sse2 =           (cf.features&SSE2_BIT)!=0;
1125     _sse3 =           (cf.miscfeatures&SSE3_BIT)!=0;
1126     _ssse3 =          (cf.miscfeatures&SSSE3_BIT)!=0;
1127     _sse41 =          (cf.miscfeatures&SSE41_BIT)!=0;
1128     _sse42 =          (cf.miscfeatures&SSE42_BIT)!=0;
1129     _sse4a =          (cf.amdmiscfeatures&SSE4A_BIT)!=0;
1130     _aes =            (cf.miscfeatures&AES_BIT)!=0;
1131     _hasPclmulqdq =   (cf.miscfeatures&PCLMULQDQ_BIT)!=0;
1132     _hasRdrand =      (cf.miscfeatures&RDRAND_BIT)!=0;
1133 
1134     enum avx_mask = XF_SSE_BIT|XF_YMM_BIT;
1135     _avx =            (cf.xfeatures & avx_mask) == avx_mask && (cf.miscfeatures&AVX_BIT)!=0;
1136 
1137     _vaes =           avx && aes;
1138     _hasVpclmulqdq =  avx && hasPclmulqdq;
1139     _fma =            avx && (cf.miscfeatures&FMA_BIT)!=0;
1140     _fp16c =          avx && (cf.miscfeatures&FP16C_BIT)!=0;
1141     _avx2 =           avx && (cf.extfeatures & AVX2_BIT) != 0;
1142     _hle =            (cf.extfeatures & HLE_BIT) != 0;
1143     _rtm =            (cf.extfeatures & RTM_BIT) != 0;
1144     _avx512f =        (cf.extfeatures & AVX512F_BIT) != 0;
1145     _hasRdseed =      (cf.extfeatures&RDSEED_BIT)!=0;
1146     _hasSha =         (cf.extfeatures&SHA_BIT)!=0;
1147     _amd3dnow =       (cf.amdfeatures&AMD_3DNOW_BIT)!=0;
1148     _amd3dnowExt =    (cf.amdfeatures&AMD_3DNOW_EXT_BIT)!=0;
1149     _amdMmx =         (cf.amdfeatures&AMD_MMX_BIT)!=0;
1150     _hasFxsr =        (cf.features&FXSR_BIT)!=0;
1151     _hasCmov =        (cf.features&CMOV_BIT)!=0;
1152     _hasRdtsc =       (cf.features&TIMESTAMP_BIT)!=0;
1153     _hasCmpxchg8b =   (cf.features&CMPXCHG8B_BIT)!=0;
1154     _hasCmpxchg16b =  (cf.miscfeatures&CMPXCHG16B_BIT)!=0;
1155     _hasSysEnterSysExit =
1156         // The SYSENTER/SYSEXIT features were buggy on Pentium Pro and early PentiumII.
1157         // (REF: www.geoffchappell.com).
1158         (cf.probablyIntel && (family < 6 || (family==6 && (model< 3 || (model==3 && stepping<3)))))
1159             ? false
1160             : (cf.features & SYSENTERSYSEXIT_BIT)!=0;
1161     _has3dnowPrefetch = (cf.amdmiscfeatures&AMD_3DNOW_PREFETCH_BIT)!=0;
1162     _hasLahfSahf =    (cf.amdmiscfeatures&LAHFSAHF_BIT)!=0;
1163     _hasPopcnt =      (cf.miscfeatures&POPCNT_BIT)!=0;
1164     _hasLzcnt =       (cf.amdmiscfeatures&LZCNT_BIT)!=0;
1165     _isX86_64 =       (cf.amdfeatures&AMD64_BIT)!=0;
1166     _isItanium =      (cf.features&IA64_BIT)!=0;
1167     _hyperThreading = cf.maxThreads>cf.maxCores;
1168     _threadsPerCPU =  cf.maxThreads;
1169     _coresPerCPU =    cf.maxCores;
1170     _preferAthlon =   cf.probablyAMD && family >=6;
1171     _preferPentium4 = cf.probablyIntel && family == 0xF;
1172     _preferPentium1 = family < 6 || (family==6 && model < 0xF && !cf.probablyIntel);
1173 }