1 // Written in the D programming language. 2 /** 3 This is a submodule of $(MREF std, algorithm). 4 It contains generic algorithms that implement set operations. 5 6 The functions $(LREF multiwayMerge), $(LREF multiwayUnion), $(LREF setDifference), 7 $(LREF setIntersection), $(LREF setSymmetricDifference) expect a range of sorted 8 ranges as input. 9 10 All algorithms are generalized to accept as input not only sets but also 11 $(HTTP https://en.wikipedia.org/wiki/Multiset, multisets). Each algorithm 12 documents behaviour in the presence of duplicated inputs. 13 14 $(SCRIPT inhibitQuickIndex = 1;) 15 $(BOOKTABLE Cheat Sheet, 16 $(TR $(TH Function Name) $(TH Description)) 17 $(T2 cartesianProduct, 18 Computes Cartesian product of two ranges.) 19 $(T2 largestPartialIntersection, 20 Copies out the values that occur most frequently in a range of ranges.) 21 $(T2 largestPartialIntersectionWeighted, 22 Copies out the values that occur most frequently (multiplied by 23 per-value weights) in a range of ranges.) 24 $(T2 multiwayMerge, 25 Merges a range of sorted ranges.) 26 $(T2 multiwayUnion, 27 Computes the union of a range of sorted ranges.) 28 $(T2 setDifference, 29 Lazily computes the set difference of two or more sorted ranges.) 30 $(T2 setIntersection, 31 Lazily computes the intersection of two or more sorted ranges.) 32 $(T2 setSymmetricDifference, 33 Lazily computes the symmetric set difference of two or more sorted 34 ranges.) 35 ) 36 37 Copyright: Andrei Alexandrescu 2008-. 38 39 License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0). 40 41 Authors: $(HTTP erdani.com, Andrei Alexandrescu) 42 43 Source: $(PHOBOSSRC std/algorithm/setops.d) 44 45 Macros: 46 T2=$(TR $(TDNW $(LREF $1)) $(TD $+)) 47 */ 48 module std.algorithm.setops; 49 50 import std.range.primitives; 51 52 import std.functional : unaryFun, binaryFun; 53 import std.traits; 54 import std.meta : AliasSeq, staticMap, allSatisfy, anySatisfy; 55 56 import std.algorithm.sorting : Merge; 57 import std.typecons : No; 58 59 // cartesianProduct 60 /** 61 Lazily computes the Cartesian product of two or more ranges. The product is a 62 range of tuples of elements from each respective range. 63 64 The conditions for the two-range case are as follows: 65 66 If both ranges are finite, then one must be (at least) a 67 $(REF_ALTTEXT forward range, isForwardRange, std,range,primitives) and the 68 other an $(REF_ALTTEXT input range, isInputRange, std,range,primitives). 69 70 If one range is infinite and the other finite, then the finite range must 71 be a forward range, and the infinite range can be an input range. 72 73 If both ranges are infinite, then both must be forward ranges. 74 75 When there are more than two ranges, the above conditions apply to each 76 adjacent pair of ranges. 77 78 Params: 79 range1 = The first range 80 range2 = The second range 81 ranges = Two or more non-infinite forward ranges 82 otherRanges = Zero or more non-infinite forward ranges 83 84 Returns: 85 A forward range of $(REF Tuple, std,typecons) representing elements of the 86 cartesian product of the given ranges. 87 */ 88 auto cartesianProduct(R1, R2)(R1 range1, R2 range2) 89 if (!allSatisfy!(isForwardRange, R1, R2) || 90 anySatisfy!(isInfinite, R1, R2)) 91 { 92 import std.algorithm.iteration : map, joiner; 93 94 static if (isInfinite!R1 && isInfinite!R2) 95 { 96 static if (isForwardRange!R1 && isForwardRange!R2) 97 { 98 import std.range : zip, repeat, take, chain, sequence; 99 100 // This algorithm traverses the cartesian product by alternately 101 // covering the right and bottom edges of an increasing square area 102 // over the infinite table of combinations. This schedule allows us 103 // to require only forward ranges. 104 return zip(sequence!"n"(cast(size_t) 0), range1.save, range2.save, 105 repeat(range1), repeat(range2)) 106 .map!(function(a) => chain( 107 zip(repeat(a[1]), take(a[4].save, a[0])), 108 zip(take(a[3].save, a[0]+1), repeat(a[2])) 109 ))() 110 .joiner(); 111 } 112 else static assert(0, "cartesianProduct of infinite ranges requires "~ 113 "forward ranges"); 114 } 115 else static if (isInputRange!R1 && isForwardRange!R2 && !isInfinite!R2) 116 { 117 import std.range : zip, repeat; 118 return joiner(map!((ElementType!R1 a) => zip(repeat(a), range2.save)) 119 (range1)); 120 } 121 else static if (isInputRange!R2 && isForwardRange!R1 && !isInfinite!R1) 122 { 123 import std.range : zip, repeat; 124 return joiner(map!((ElementType!R2 a) => zip(range1.save, repeat(a))) 125 (range2)); 126 } 127 else static assert(0, "cartesianProduct involving finite ranges must "~ 128 "have at least one finite forward range"); 129 } 130 131 /// 132 @safe unittest 133 { 134 import std.algorithm.searching : canFind; 135 import std.range; 136 import std.typecons : tuple; 137 138 auto N = sequence!"n"(0); // the range of natural numbers 139 auto N2 = cartesianProduct(N, N); // the range of all pairs of natural numbers 140 141 // Various arbitrary number pairs can be found in the range in finite time. 142 assert(canFind(N2, tuple(0, 0))); 143 assert(canFind(N2, tuple(123, 321))); 144 assert(canFind(N2, tuple(11, 35))); 145 assert(canFind(N2, tuple(279, 172))); 146 } 147 148 /// 149 @safe unittest 150 { 151 import std.algorithm.searching : canFind; 152 import std.typecons : tuple; 153 154 auto B = [ 1, 2, 3 ]; 155 auto C = [ 4, 5, 6 ]; 156 auto BC = cartesianProduct(B, C); 157 158 foreach (n; [[1, 4], [2, 4], [3, 4], [1, 5], [2, 5], [3, 5], [1, 6], 159 [2, 6], [3, 6]]) 160 { 161 assert(canFind(BC, tuple(n[0], n[1]))); 162 } 163 } 164 165 @safe unittest 166 { 167 // Test cartesian product of two infinite ranges 168 import std.algorithm.searching : canFind; 169 import std.range; 170 import std.typecons : tuple; 171 172 auto Even = sequence!"2*n"(0); 173 auto Odd = sequence!"2*n+1"(0); 174 auto EvenOdd = cartesianProduct(Even, Odd); 175 176 foreach (pair; [[0, 1], [2, 1], [0, 3], [2, 3], [4, 1], [4, 3], [0, 5], 177 [2, 5], [4, 5], [6, 1], [6, 3], [6, 5]]) 178 { 179 assert(canFind(EvenOdd, tuple(pair[0], pair[1]))); 180 } 181 182 // This should terminate in finite time 183 assert(canFind(EvenOdd, tuple(124, 73))); 184 assert(canFind(EvenOdd, tuple(0, 97))); 185 assert(canFind(EvenOdd, tuple(42, 1))); 186 } 187 188 @safe unittest 189 { 190 // Test cartesian product of an infinite input range and a finite forward 191 // range. 192 import std.algorithm.searching : canFind; 193 import std.range; 194 import std.typecons : tuple; 195 196 auto N = sequence!"n"(0); 197 auto M = [100, 200, 300]; 198 auto NM = cartesianProduct(N,M); 199 200 foreach (pair; [[0, 100], [0, 200], [0, 300], [1, 100], [1, 200], [1, 300], 201 [2, 100], [2, 200], [2, 300], [3, 100], [3, 200], 202 [3, 300]]) 203 { 204 assert(canFind(NM, tuple(pair[0], pair[1]))); 205 } 206 207 // We can't solve the halting problem, so we can only check a finite 208 // initial segment here. 209 assert(!canFind(NM.take(100), tuple(100, 0))); 210 assert(!canFind(NM.take(100), tuple(1, 1))); 211 assert(!canFind(NM.take(100), tuple(100, 200))); 212 213 auto MN = cartesianProduct(M,N); 214 foreach (pair; [[100, 0], [200, 0], [300, 0], [100, 1], [200, 1], [300, 1], 215 [100, 2], [200, 2], [300, 2], [100, 3], [200, 3], 216 [300, 3]]) 217 { 218 assert(canFind(MN, tuple(pair[0], pair[1]))); 219 } 220 221 // We can't solve the halting problem, so we can only check a finite 222 // initial segment here. 223 assert(!canFind(MN.take(100), tuple(0, 100))); 224 assert(!canFind(MN.take(100), tuple(0, 1))); 225 assert(!canFind(MN.take(100), tuple(100, 200))); 226 } 227 228 @safe unittest 229 { 230 import std.algorithm.searching : canFind; 231 import std.typecons : tuple; 232 233 // Test cartesian product of two finite ranges. 234 auto X = [1, 2, 3]; 235 auto Y = [4, 5, 6]; 236 auto XY = cartesianProduct(X, Y); 237 auto Expected = [[1, 4], [1, 5], [1, 6], [2, 4], [2, 5], [2, 6], [3, 4], 238 [3, 5], [3, 6]]; 239 240 // Verify Expected ⊆ XY 241 foreach (pair; Expected) 242 { 243 assert(canFind(XY, tuple(pair[0], pair[1]))); 244 } 245 246 // Verify XY ⊆ Expected 247 foreach (pair; XY) 248 { 249 assert(canFind(Expected, [pair[0], pair[1]])); 250 } 251 252 // And therefore, by set comprehension, XY == Expected 253 } 254 255 @safe unittest 256 { 257 import std.algorithm.comparison : equal; 258 import std.algorithm.iteration : map; 259 import std.algorithm.searching : canFind; 260 import std.typecons : tuple; 261 262 import std.range; 263 auto N = sequence!"n"(0); 264 265 // To force the template to fall to the second case, we wrap N in a struct 266 // that doesn't allow bidirectional access. 267 struct FwdRangeWrapper(R) 268 { 269 R impl; 270 271 // Input range API 272 @property auto front() { return impl.front; } 273 void popFront() { impl.popFront(); } 274 static if (isInfinite!R) 275 enum empty = false; 276 else 277 @property bool empty() { return impl.empty; } 278 279 // Forward range API 280 @property auto save() { return typeof(this)(impl.save); } 281 } 282 auto fwdWrap(R)(R range) { return FwdRangeWrapper!R(range); } 283 284 // General test: two infinite bidirectional ranges 285 auto N2 = cartesianProduct(N, N); 286 287 assert(canFind(N2, tuple(0, 0))); 288 assert(canFind(N2, tuple(123, 321))); 289 assert(canFind(N2, tuple(11, 35))); 290 assert(canFind(N2, tuple(279, 172))); 291 292 // Test first case: forward range with bidirectional range 293 auto fwdN = fwdWrap(N); 294 auto N2_a = cartesianProduct(fwdN, N); 295 296 assert(canFind(N2_a, tuple(0, 0))); 297 assert(canFind(N2_a, tuple(123, 321))); 298 assert(canFind(N2_a, tuple(11, 35))); 299 assert(canFind(N2_a, tuple(279, 172))); 300 301 // Test second case: bidirectional range with forward range 302 auto N2_b = cartesianProduct(N, fwdN); 303 304 assert(canFind(N2_b, tuple(0, 0))); 305 assert(canFind(N2_b, tuple(123, 321))); 306 assert(canFind(N2_b, tuple(11, 35))); 307 assert(canFind(N2_b, tuple(279, 172))); 308 309 // Test third case: finite forward range with (infinite) input range 310 static struct InpRangeWrapper(R) 311 { 312 R impl; 313 314 // Input range API 315 @property auto front() { return impl.front; } 316 void popFront() { impl.popFront(); } 317 static if (isInfinite!R) 318 enum empty = false; 319 else 320 @property bool empty() { return impl.empty; } 321 } 322 auto inpWrap(R)(R r) { return InpRangeWrapper!R(r); } 323 324 auto inpN = inpWrap(N); 325 auto B = [ 1, 2, 3 ]; 326 auto fwdB = fwdWrap(B); 327 auto BN = cartesianProduct(fwdB, inpN); 328 329 assert(equal(map!"[a[0],a[1]]"(BN.take(10)), [[1, 0], [2, 0], [3, 0], 330 [1, 1], [2, 1], [3, 1], [1, 2], [2, 2], [3, 2], [1, 3]])); 331 332 // Test fourth case: (infinite) input range with finite forward range 333 auto NB = cartesianProduct(inpN, fwdB); 334 335 assert(equal(map!"[a[0],a[1]]"(NB.take(10)), [[0, 1], [0, 2], [0, 3], 336 [1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3], [3, 1]])); 337 338 // General finite range case 339 auto C = [ 4, 5, 6 ]; 340 auto BC = cartesianProduct(B, C); 341 342 foreach (n; [[1, 4], [2, 4], [3, 4], [1, 5], [2, 5], [3, 5], [1, 6], 343 [2, 6], [3, 6]]) 344 { 345 assert(canFind(BC, tuple(n[0], n[1]))); 346 } 347 } 348 349 // https://issues.dlang.org/show_bug.cgi?id=13091 350 pure nothrow @safe @nogc unittest 351 { 352 int[1] a = [1]; 353 foreach (t; cartesianProduct(a[], a[])) {} 354 } 355 356 /// ditto 357 auto cartesianProduct(RR...)(RR ranges) 358 if (ranges.length >= 2 && 359 allSatisfy!(isForwardRange, RR) && 360 !anySatisfy!(isInfinite, RR)) 361 { 362 // This overload uses a much less template-heavy implementation when 363 // all ranges are finite forward ranges, which is the most common use 364 // case, so that we don't run out of resources too quickly. 365 // 366 // For infinite ranges or non-forward ranges, we fall back to the old 367 // implementation which expands an exponential number of templates. 368 import std.typecons : tuple; 369 370 static struct Result 371 { 372 RR ranges; 373 RR current; 374 bool empty = true; 375 376 this(RR _ranges) 377 { 378 ranges = _ranges; 379 empty = false; 380 foreach (i, r; ranges) 381 { 382 current[i] = r.save; 383 if (current[i].empty) 384 empty = true; 385 } 386 } 387 @property auto front() 388 { 389 import std.algorithm.internal : algoFormat; 390 import std.range : iota; 391 return mixin(algoFormat("tuple(%(current[%d].front%|,%))", 392 iota(0, current.length))); 393 } 394 void popFront() scope 395 { 396 foreach_reverse (i, ref r; current) 397 { 398 r.popFront(); 399 if (!r.empty) break; 400 401 static if (i == 0) 402 empty = true; 403 else 404 r = ranges[i].save; // rollover 405 } 406 } 407 @property Result save() return scope 408 { 409 Result copy = this; 410 foreach (i, r; ranges) 411 { 412 copy.ranges[i] = ranges[i].save; 413 copy.current[i] = current[i].save; 414 } 415 return copy; 416 } 417 } 418 static assert(isForwardRange!Result, Result.stringof ~ " must be a forward" 419 ~ " range"); 420 421 return Result(ranges); 422 } 423 424 // cartesian product of empty ranges should be empty 425 // https://issues.dlang.org/show_bug.cgi?id=10693 426 @safe unittest 427 { 428 int[] a, b, c, d, e; 429 auto cprod = cartesianProduct(a,b,c,d,e); 430 assert(cprod.empty); 431 foreach (_; cprod) {} // should not crash 432 433 // Test case where only one of the ranges is empty: the result should still 434 // be empty. 435 int[] p=[1], q=[]; 436 auto cprod2 = cartesianProduct(p,p,p,q,p); 437 assert(cprod2.empty); 438 foreach (_; cprod2) {} // should not crash 439 } 440 441 @safe unittest 442 { 443 // .init value of cartesianProduct should be empty 444 auto cprod = cartesianProduct([0,0], [1,1], [2,2]); 445 assert(!cprod.empty); 446 assert(cprod.init.empty); 447 } 448 449 // https://issues.dlang.org/show_bug.cgi?id=13393 450 @safe unittest 451 { 452 assert(!cartesianProduct([0],[0],[0]).save.empty); 453 } 454 455 /// ditto 456 auto cartesianProduct(R1, R2, RR...)(R1 range1, R2 range2, RR otherRanges) 457 if (!allSatisfy!(isForwardRange, R1, R2, RR) || 458 anySatisfy!(isInfinite, R1, R2, RR)) 459 { 460 /* We implement the n-ary cartesian product by recursively invoking the 461 * binary cartesian product. To make the resulting range nicer, we denest 462 * one level of tuples so that a ternary cartesian product, for example, 463 * returns 3-element tuples instead of nested 2-element tuples. 464 */ 465 import std.algorithm.internal : algoFormat; 466 import std.algorithm.iteration : map; 467 import std.range : iota; 468 469 enum string denest = algoFormat("tuple(a[0], %(a[1][%d]%|,%))", 470 iota(0, otherRanges.length+1)); 471 return map!denest( 472 cartesianProduct(range1, cartesianProduct(range2, otherRanges)) 473 ); 474 } 475 476 @safe unittest 477 { 478 import std.algorithm.searching : canFind; 479 import std.range; 480 import std.typecons : tuple, Tuple; 481 482 auto N = sequence!"n"(0); 483 auto N3 = cartesianProduct(N, N, N); 484 485 // Check that tuples are properly denested 486 assert(is(ElementType!(typeof(N3)) == Tuple!(size_t,size_t,size_t))); 487 488 assert(canFind(N3, tuple(0, 27, 7))); 489 assert(canFind(N3, tuple(50, 23, 11))); 490 assert(canFind(N3, tuple(9, 3, 0))); 491 } 492 493 @safe unittest 494 { 495 import std.algorithm.searching : canFind; 496 import std.range; 497 import std.typecons : tuple, Tuple; 498 499 auto N = sequence!"n"(0); 500 auto N4 = cartesianProduct(N, N, N, N); 501 502 // Check that tuples are properly denested 503 assert(is(ElementType!(typeof(N4)) == Tuple!(size_t,size_t,size_t,size_t))); 504 505 assert(canFind(N4, tuple(1, 2, 3, 4))); 506 assert(canFind(N4, tuple(4, 3, 2, 1))); 507 assert(canFind(N4, tuple(10, 3, 1, 2))); 508 } 509 510 // https://issues.dlang.org/show_bug.cgi?id=9878 511 /// 512 @safe unittest 513 { 514 import std.algorithm.comparison : equal; 515 import std.typecons : tuple; 516 517 auto A = [ 1, 2, 3 ]; 518 auto B = [ 'a', 'b', 'c' ]; 519 auto C = [ "x", "y", "z" ]; 520 auto ABC = cartesianProduct(A, B, C); 521 522 assert(ABC.equal([ 523 tuple(1, 'a', "x"), tuple(1, 'a', "y"), tuple(1, 'a', "z"), 524 tuple(1, 'b', "x"), tuple(1, 'b', "y"), tuple(1, 'b', "z"), 525 tuple(1, 'c', "x"), tuple(1, 'c', "y"), tuple(1, 'c', "z"), 526 tuple(2, 'a', "x"), tuple(2, 'a', "y"), tuple(2, 'a', "z"), 527 tuple(2, 'b', "x"), tuple(2, 'b', "y"), tuple(2, 'b', "z"), 528 tuple(2, 'c', "x"), tuple(2, 'c', "y"), tuple(2, 'c', "z"), 529 tuple(3, 'a', "x"), tuple(3, 'a', "y"), tuple(3, 'a', "z"), 530 tuple(3, 'b', "x"), tuple(3, 'b', "y"), tuple(3, 'b', "z"), 531 tuple(3, 'c', "x"), tuple(3, 'c', "y"), tuple(3, 'c', "z") 532 ])); 533 } 534 535 pure @safe nothrow @nogc unittest 536 { 537 import std.range.primitives : isForwardRange; 538 int[2] A = [1,2]; 539 auto C = cartesianProduct(A[], A[], A[]); 540 assert(isForwardRange!(typeof(C))); 541 542 C.popFront(); 543 auto front1 = C.front; 544 auto D = C.save; 545 C.popFront(); 546 assert(D.front == front1); 547 } 548 549 // https://issues.dlang.org/show_bug.cgi?id=13935 550 @safe unittest 551 { 552 import std.algorithm.iteration : map; 553 auto seq = [1, 2].map!(x => x); 554 foreach (pair; cartesianProduct(seq, seq)) {} 555 } 556 557 @system unittest 558 { 559 import std.algorithm.comparison : equal; 560 import std.typecons : tuple; 561 562 static struct SystemRange 563 { 564 int[] data; 565 566 int front() @system @property inout 567 { 568 return data[0]; 569 } 570 571 bool empty() @system @property inout 572 { 573 return data.length == 0; 574 } 575 576 void popFront() @system 577 { 578 data = data[1 .. $]; 579 } 580 581 SystemRange save() @system 582 { 583 return this; 584 } 585 } 586 587 assert(SystemRange([1, 2]).cartesianProduct(SystemRange([3, 4])) 588 .equal([tuple(1, 3), tuple(1, 4), tuple(2, 3), tuple(2, 4)])); 589 } 590 591 // largestPartialIntersection 592 /** 593 Given a range of sorted $(REF_ALTTEXT forward ranges, isForwardRange, std,range,primitives) 594 `ror`, copies to `tgt` the elements that are common to most ranges, along with their number 595 of occurrences. All ranges in `ror` are assumed to be sorted by $(D 596 less). Only the most frequent `tgt.length` elements are returned. 597 598 Params: 599 less = The predicate the ranges are sorted by. 600 ror = A range of forward ranges sorted by `less`. 601 tgt = The target range to copy common elements to. 602 sorted = Whether the elements copied should be in sorted order. 603 604 The function `largestPartialIntersection` is useful for 605 e.g. searching an $(LINK2 https://en.wikipedia.org/wiki/Inverted_index, 606 inverted index) for the documents most 607 likely to contain some terms of interest. The complexity of the search 608 is $(BIGOH n * log(tgt.length)), where `n` is the sum of lengths of 609 all input ranges. This approach is faster than keeping an associative 610 array of the occurrences and then selecting its top items, and also 611 requires less memory (`largestPartialIntersection` builds its 612 result directly in `tgt` and requires no extra memory). 613 614 If at least one of the ranges is a multiset, then all occurences 615 of a duplicate element are taken into account. The result is 616 equivalent to merging all ranges and picking the most frequent 617 `tgt.length` elements. 618 619 Warning: Because `largestPartialIntersection` does not allocate 620 extra memory, it will leave `ror` modified. Namely, $(D 621 largestPartialIntersection) assumes ownership of `ror` and 622 discretionarily swaps and advances elements of it. If you want $(D 623 ror) to preserve its contents after the call, you may want to pass a 624 duplicate to `largestPartialIntersection` (and perhaps cache the 625 duplicate in between calls). 626 */ 627 void largestPartialIntersection 628 (alias less = "a < b", RangeOfRanges, Range) 629 (RangeOfRanges ror, Range tgt, SortOutput sorted = No.sortOutput) 630 { 631 struct UnitWeights 632 { 633 static int opIndex(ElementType!(ElementType!RangeOfRanges)) { return 1; } 634 } 635 return largestPartialIntersectionWeighted!less(ror, tgt, UnitWeights(), 636 sorted); 637 } 638 639 /// 640 @system unittest 641 { 642 import std.typecons : tuple, Tuple; 643 644 // Figure which number can be found in most arrays of the set of 645 // arrays below. 646 double[][] a = 647 [ 648 [ 1, 4, 7, 8 ], 649 [ 1, 7 ], 650 [ 1, 7, 8], 651 [ 4 ], 652 [ 7 ], 653 ]; 654 auto b = new Tuple!(double, uint)[1]; 655 // it will modify the input range, hence we need to create a duplicate 656 largestPartialIntersection(a.dup, b); 657 // First member is the item, second is the occurrence count 658 assert(b[0] == tuple(7.0, 4u)); 659 // 7.0 occurs in 4 out of 5 inputs, more than any other number 660 661 // If more of the top-frequent numbers are needed, just create a larger 662 // tgt range 663 auto c = new Tuple!(double, uint)[2]; 664 largestPartialIntersection(a, c); 665 assert(c[0] == tuple(1.0, 3u)); 666 // 1.0 occurs in 3 inputs 667 668 // multiset 669 double[][] x = 670 [ 671 [1, 1, 1, 1, 4, 7, 8], 672 [1, 7], 673 [1, 7, 8], 674 [4, 7], 675 [7] 676 ]; 677 auto y = new Tuple!(double, uint)[2]; 678 largestPartialIntersection(x.dup, y); 679 // 7.0 occurs 5 times 680 assert(y[0] == tuple(7.0, 5u)); 681 // 1.0 occurs 6 times 682 assert(y[1] == tuple(1.0, 6u)); 683 } 684 685 import std.algorithm.sorting : SortOutput; // FIXME 686 687 // largestPartialIntersectionWeighted 688 /** 689 Similar to `largestPartialIntersection`, but associates a weight 690 with each distinct element in the intersection. 691 692 If at least one of the ranges is a multiset, then all occurences 693 of a duplicate element are taken into account. The result 694 is equivalent to merging all input ranges and picking the highest 695 `tgt.length`, weight-based ranking elements. 696 697 Params: 698 less = The predicate the ranges are sorted by. 699 ror = A range of $(REF_ALTTEXT forward ranges, isForwardRange, std,range,primitives) 700 sorted by `less`. 701 tgt = The target range to copy common elements to. 702 weights = An associative array mapping elements to weights. 703 sorted = Whether the elements copied should be in sorted order. 704 705 */ 706 void largestPartialIntersectionWeighted 707 (alias less = "a < b", RangeOfRanges, Range, WeightsAA) 708 (RangeOfRanges ror, Range tgt, WeightsAA weights, SortOutput sorted = No.sortOutput) 709 { 710 import std.algorithm.iteration : group; 711 import std.algorithm.sorting : topNCopy; 712 713 if (tgt.empty) return; 714 alias InfoType = ElementType!Range; 715 bool heapComp(InfoType a, InfoType b) 716 { 717 return weights[a[0]] * a[1] > weights[b[0]] * b[1]; 718 } 719 topNCopy!heapComp(group(multiwayMerge!less(ror)), tgt, sorted); 720 } 721 722 /// 723 @system unittest 724 { 725 import std.typecons : tuple, Tuple; 726 727 // Figure which number can be found in most arrays of the set of 728 // arrays below, with specific per-element weights 729 double[][] a = 730 [ 731 [ 1, 4, 7, 8 ], 732 [ 1, 7 ], 733 [ 1, 7, 8], 734 [ 4 ], 735 [ 7 ], 736 ]; 737 auto b = new Tuple!(double, uint)[1]; 738 double[double] weights = [ 1:1.2, 4:2.3, 7:1.1, 8:1.1 ]; 739 largestPartialIntersectionWeighted(a, b, weights); 740 // First member is the item, second is the occurrence count 741 assert(b[0] == tuple(4.0, 2u)); 742 // 4.0 occurs 2 times -> 4.6 (2 * 2.3) 743 // 7.0 occurs 3 times -> 4.4 (3 * 1.1) 744 745 // multiset 746 double[][] x = 747 [ 748 [ 1, 1, 1, 4, 7, 8 ], 749 [ 1, 7 ], 750 [ 1, 7, 8], 751 [ 4 ], 752 [ 7 ], 753 ]; 754 auto y = new Tuple!(double, uint)[1]; 755 largestPartialIntersectionWeighted(x, y, weights); 756 assert(y[0] == tuple(1.0, 5u)); 757 // 1.0 occurs 5 times -> 1.2 * 5 = 6 758 } 759 760 @system unittest 761 { 762 import std.conv : text; 763 import std.typecons : tuple, Tuple, Yes; 764 765 double[][] a = 766 [ 767 [ 1, 4, 7, 8 ], 768 [ 1, 7 ], 769 [ 1, 7, 8], 770 [ 4 ], 771 [ 7 ], 772 ]; 773 auto b = new Tuple!(double, uint)[2]; 774 largestPartialIntersection(a, b, Yes.sortOutput); 775 assert(b == [ tuple(7.0, 4u), tuple(1.0, 3u) ][], text(b)); 776 assert(a[0].empty); 777 } 778 779 @system unittest 780 { 781 import std.conv : text; 782 import std.typecons : tuple, Tuple, Yes; 783 784 string[][] a = 785 [ 786 [ "1", "4", "7", "8" ], 787 [ "1", "7" ], 788 [ "1", "7", "8"], 789 [ "4" ], 790 [ "7" ], 791 ]; 792 auto b = new Tuple!(string, uint)[2]; 793 largestPartialIntersection(a, b, Yes.sortOutput); 794 assert(b == [ tuple("7", 4u), tuple("1", 3u) ][], text(b)); 795 } 796 797 @system unittest 798 { 799 import std.typecons : tuple, Tuple; 800 801 // Figure which number can be found in most arrays of the set of 802 // arrays below, with specific per-element weights 803 double[][] a = 804 [ 805 [ 1, 4, 7, 8 ], 806 [ 1, 7 ], 807 [ 1, 7, 8], 808 [ 4 ], 809 [ 7 ], 810 ]; 811 auto b = new Tuple!(double, uint)[1]; 812 double[double] weights = [ 1:1.2, 4:2.3, 7:1.1, 8:1.1 ]; 813 largestPartialIntersectionWeighted(a, b, weights); 814 // First member is the item, second is the occurrence count 815 assert(b[0] == tuple(4.0, 2u)); 816 } 817 818 @system unittest 819 { 820 import std.container : Array; 821 import std.typecons : Tuple; 822 823 alias T = Tuple!(uint, uint); 824 const Array!T arrayOne = Array!T( [ T(1,2), T(3,4) ] ); 825 const Array!T arrayTwo = Array!T([ T(1,2), T(3,4) ] ); 826 827 assert(arrayOne == arrayTwo); 828 } 829 830 // MultiwayMerge 831 /** 832 Merges multiple sets. The input sets are passed as a 833 range of ranges and each is assumed to be sorted by $(D 834 less). Computation is done lazily, one union element at a time. The 835 complexity of one `popFront` operation is $(BIGOH 836 log(ror.length)). However, the length of `ror` decreases as ranges 837 in it are exhausted, so the complexity of a full pass through $(D 838 MultiwayMerge) is dependent on the distribution of the lengths of ranges 839 contained within `ror`. If all ranges have the same length `n` 840 (worst case scenario), the complexity of a full pass through $(D 841 MultiwayMerge) is $(BIGOH n * ror.length * log(ror.length)), i.e., $(D 842 log(ror.length)) times worse than just spanning all ranges in 843 turn. The output comes sorted (unstably) by `less`. 844 845 The length of the resulting range is the sum of all lengths of 846 the ranges passed as input. This means that all elements (duplicates 847 included) are transferred to the resulting range. 848 849 For backward compatibility, `multiwayMerge` is available under 850 the name `nWayUnion` and `MultiwayMerge` under the name of `NWayUnion` . 851 Future code should use `multiwayMerge` and `MultiwayMerge` as `nWayUnion` 852 and `NWayUnion` will be deprecated. 853 854 Params: 855 less = Predicate the given ranges are sorted by. 856 ror = A range of ranges sorted by `less` to compute the union for. 857 858 Returns: 859 A range of the union of the ranges in `ror`. 860 861 Warning: Because `MultiwayMerge` does not allocate extra memory, it 862 will leave `ror` modified. Namely, `MultiwayMerge` assumes ownership 863 of `ror` and discretionarily swaps and advances elements of it. If 864 you want `ror` to preserve its contents after the call, you may 865 want to pass a duplicate to `MultiwayMerge` (and perhaps cache the 866 duplicate in between calls). 867 868 See_Also: $(REF merge, std,algorithm,sorting) for an analogous function that 869 takes a static number of ranges of possibly disparate types. 870 */ 871 struct MultiwayMerge(alias less, RangeOfRanges) 872 { 873 import std.container : BinaryHeap; 874 875 private alias ElementType = .ElementType!(.ElementType!RangeOfRanges); 876 private alias comp = binaryFun!less; 877 private RangeOfRanges _ror; 878 879 /// 880 static bool compFront(.ElementType!RangeOfRanges a, 881 .ElementType!RangeOfRanges b) 882 { 883 // revert comparison order so we get the smallest elements first 884 return comp(b.front, a.front); 885 } 886 private BinaryHeap!(RangeOfRanges, compFront) _heap; 887 888 /// 889 this(RangeOfRanges ror) 890 { 891 import std.algorithm.mutation : remove, SwapStrategy; 892 893 // Preemptively get rid of all empty ranges in the input 894 // No need for stability either 895 _ror = remove!("a.empty", SwapStrategy.unstable)(ror); 896 //Build the heap across the range 897 _heap.acquire(_ror); 898 } 899 900 /// 901 @property bool empty() { return _ror.empty; } 902 903 /// 904 @property auto ref front() 905 { 906 return _heap.front.front; 907 } 908 909 /// 910 void popFront() 911 { 912 _heap.removeFront(); 913 // let's look at the guy just popped 914 _ror.back.popFront(); 915 if (_ror.back.empty) 916 { 917 _ror.popBack(); 918 // nothing else to do: the empty range is not in the 919 // heap and not in _ror 920 return; 921 } 922 // Put the popped range back in the heap 923 const bool worked = _heap.conditionalInsert(_ror.back); 924 assert(worked, "Failed to insert item into heap"); 925 } 926 } 927 928 /// Ditto 929 MultiwayMerge!(less, RangeOfRanges) multiwayMerge 930 (alias less = "a < b", RangeOfRanges) 931 (RangeOfRanges ror) 932 { 933 return typeof(return)(ror); 934 } 935 936 /// 937 @system unittest 938 { 939 import std.algorithm.comparison : equal; 940 941 double[][] a = 942 [ 943 [ 1, 4, 7, 8 ], 944 [ 1, 7 ], 945 [ 1, 7, 8], 946 [ 4 ], 947 [ 7 ], 948 ]; 949 auto witness = [ 950 1, 1, 1, 4, 4, 7, 7, 7, 7, 8, 8 951 ]; 952 assert(equal(multiwayMerge(a), witness)); 953 954 double[][] b = 955 [ 956 // range with duplicates 957 [ 1, 1, 4, 7, 8 ], 958 [ 7 ], 959 [ 1, 7, 8], 960 [ 4 ], 961 [ 7 ], 962 ]; 963 // duplicates are propagated to the resulting range 964 assert(equal(multiwayMerge(b), witness)); 965 } 966 967 alias nWayUnion = multiwayMerge; 968 alias NWayUnion = MultiwayMerge; 969 970 /** 971 Computes the union of multiple ranges. The 972 $(REF_ALTTEXT input ranges, isInputRange, std,range,primitives) are passed 973 as a range of ranges and each is assumed to be sorted by $(D 974 less). Computation is done lazily, one union element at a time. 975 `multiwayUnion(ror)` is functionally equivalent to `multiwayMerge(ror).uniq`. 976 977 "The output of multiwayUnion has no duplicates even when its inputs contain duplicates." 978 979 Params: 980 less = Predicate the given ranges are sorted by. 981 ror = A range of ranges sorted by `less` to compute the intersection for. 982 983 Returns: 984 A range of the union of the ranges in `ror`. 985 986 See also: $(LREF multiwayMerge) 987 */ 988 auto multiwayUnion(alias less = "a < b", RangeOfRanges)(RangeOfRanges ror) 989 { 990 import std.algorithm.iteration : uniq; 991 import std.functional : not; 992 return ror.multiwayMerge!(less).uniq!(not!less); 993 } 994 995 /// 996 @system unittest 997 { 998 import std.algorithm.comparison : equal; 999 1000 // sets 1001 double[][] a = 1002 [ 1003 [ 1, 4, 7, 8 ], 1004 [ 1, 7 ], 1005 [ 1, 7, 8], 1006 [ 4 ], 1007 [ 7 ], 1008 ]; 1009 1010 auto witness = [1, 4, 7, 8]; 1011 assert(equal(multiwayUnion(a), witness)); 1012 1013 // multisets 1014 double[][] b = 1015 [ 1016 [ 1, 1, 1, 4, 7, 8 ], 1017 [ 1, 7 ], 1018 [ 1, 7, 7, 8], 1019 [ 4 ], 1020 [ 7 ], 1021 ]; 1022 assert(equal(multiwayUnion(b), witness)); 1023 1024 double[][] c = 1025 [ 1026 [9, 8, 8, 8, 7, 6], 1027 [9, 8, 6], 1028 [9, 8, 5] 1029 ]; 1030 auto witness2 = [9, 8, 7, 6, 5]; 1031 assert(equal(multiwayUnion!"a > b"(c), witness2)); 1032 } 1033 1034 /** 1035 Lazily computes the difference of `r1` and `r2`. The two ranges 1036 are assumed to be sorted by `less`. The element types of the two 1037 ranges must have a common type. 1038 1039 1040 In the case of multisets, considering that element `a` appears `x` 1041 times in `r1` and `y` times and `r2`, the number of occurences 1042 of `a` in the resulting range is going to be `x-y` if x > y or 0 otherwise. 1043 1044 Params: 1045 less = Predicate the given ranges are sorted by. 1046 r1 = The first range. 1047 r2 = The range to subtract from `r1`. 1048 1049 Returns: 1050 A range of the difference of `r1` and `r2`. 1051 1052 See_also: $(LREF setSymmetricDifference) 1053 */ 1054 struct SetDifference(alias less = "a < b", R1, R2) 1055 if (isInputRange!(R1) && isInputRange!(R2)) 1056 { 1057 private: 1058 R1 r1; 1059 R2 r2; 1060 alias comp = binaryFun!(less); 1061 1062 void adjustPosition() 1063 { 1064 while (!r1.empty) 1065 { 1066 if (r2.empty || comp(r1.front, r2.front)) break; 1067 if (comp(r2.front, r1.front)) 1068 { 1069 r2.popFront(); 1070 } 1071 else 1072 { 1073 // both are equal 1074 r1.popFront(); 1075 r2.popFront(); 1076 } 1077 } 1078 } 1079 1080 public: 1081 /// 1082 this(R1 r1, R2 r2) 1083 { 1084 this.r1 = r1; 1085 this.r2 = r2; 1086 // position to the first element 1087 adjustPosition(); 1088 } 1089 1090 /// 1091 void popFront() 1092 { 1093 r1.popFront(); 1094 adjustPosition(); 1095 } 1096 1097 /// 1098 @property auto ref front() 1099 { 1100 assert(!empty, "Can not get front of empty SetDifference"); 1101 return r1.front; 1102 } 1103 1104 static if (isForwardRange!R1 && isForwardRange!R2) 1105 { 1106 /// 1107 @property typeof(this) save() 1108 { 1109 auto ret = this; 1110 ret.r1 = r1.save; 1111 ret.r2 = r2.save; 1112 return ret; 1113 } 1114 } 1115 1116 /// 1117 @property bool empty() { return r1.empty; } 1118 } 1119 1120 /// Ditto 1121 SetDifference!(less, R1, R2) setDifference(alias less = "a < b", R1, R2) 1122 (R1 r1, R2 r2) 1123 { 1124 return typeof(return)(r1, r2); 1125 } 1126 1127 /// 1128 @safe unittest 1129 { 1130 import std.algorithm.comparison : equal; 1131 import std.range.primitives : isForwardRange; 1132 1133 //sets 1134 int[] a = [ 1, 2, 4, 5, 7, 9 ]; 1135 int[] b = [ 0, 1, 2, 4, 7, 8 ]; 1136 assert(equal(setDifference(a, b), [5, 9])); 1137 static assert(isForwardRange!(typeof(setDifference(a, b)))); 1138 1139 // multisets 1140 int[] x = [1, 1, 1, 2, 3]; 1141 int[] y = [1, 1, 2, 4, 5]; 1142 auto r = setDifference(x, y); 1143 assert(equal(r, [1, 3])); 1144 assert(setDifference(r, x).empty); 1145 } 1146 1147 // https://issues.dlang.org/show_bug.cgi?id=10460 1148 @safe unittest 1149 { 1150 import std.algorithm.comparison : equal; 1151 1152 int[] a = [1, 2, 3, 4, 5]; 1153 int[] b = [2, 4]; 1154 foreach (ref e; setDifference(a, b)) 1155 e = 0; 1156 assert(equal(a, [0, 2, 0, 4, 0])); 1157 } 1158 1159 /** 1160 Lazily computes the intersection of two or more 1161 $(REF_ALTTEXT input ranges, isInputRange, std,range,primitives) 1162 `ranges`. The ranges are assumed to be sorted by `less`. The element 1163 types of the ranges must have a common type. 1164 1165 In the case of multisets, the range with the minimum number of 1166 occurences of a given element, propagates the number of 1167 occurences of this element to the resulting range. 1168 1169 Params: 1170 less = Predicate the given ranges are sorted by. 1171 ranges = The ranges to compute the intersection for. 1172 1173 Returns: 1174 A range containing the intersection of the given ranges. 1175 */ 1176 struct SetIntersection(alias less = "a < b", Rs...) 1177 if (Rs.length >= 2 && allSatisfy!(isInputRange, Rs) && 1178 !is(CommonType!(staticMap!(ElementType, Rs)) == void)) 1179 { 1180 private: 1181 Rs _input; 1182 alias comp = binaryFun!less; 1183 alias ElementType = CommonType!(staticMap!(.ElementType, Rs)); 1184 1185 // Positions to the first elements that are all equal 1186 void adjustPosition() 1187 { 1188 if (empty) return; 1189 1190 size_t done = Rs.length; 1191 static if (Rs.length > 1) while (true) 1192 { 1193 foreach (i, ref r; _input) 1194 { 1195 alias next = _input[(i + 1) % Rs.length]; 1196 1197 if (comp(next.front, r.front)) 1198 { 1199 do 1200 { 1201 next.popFront(); 1202 if (next.empty) return; 1203 } while (comp(next.front, r.front)); 1204 done = Rs.length; 1205 } 1206 if (--done == 0) return; 1207 } 1208 } 1209 } 1210 1211 public: 1212 /// 1213 this(Rs input) 1214 { 1215 this._input = input; 1216 // position to the first element 1217 adjustPosition(); 1218 } 1219 1220 /// 1221 @property bool empty() 1222 { 1223 foreach (ref r; _input) 1224 { 1225 if (r.empty) return true; 1226 } 1227 return false; 1228 } 1229 1230 /// 1231 void popFront() 1232 { 1233 assert(!empty, "Can not popFront of empty SetIntersection"); 1234 static if (Rs.length > 1) foreach (i, ref r; _input) 1235 { 1236 alias next = _input[(i + 1) % Rs.length]; 1237 assert(!comp(r.front, next.front), "Set elements must not" 1238 ~ " contradict the less predicate"); 1239 } 1240 1241 foreach (ref r; _input) 1242 { 1243 r.popFront(); 1244 } 1245 adjustPosition(); 1246 } 1247 1248 /// 1249 @property ElementType front() 1250 { 1251 assert(!empty, "Can not get front of empty SetIntersection"); 1252 return _input[0].front; 1253 } 1254 1255 static if (allSatisfy!(isForwardRange, Rs)) 1256 { 1257 /// 1258 @property SetIntersection save() 1259 { 1260 auto ret = this; 1261 foreach (i, ref r; _input) 1262 { 1263 ret._input[i] = r.save; 1264 } 1265 return ret; 1266 } 1267 } 1268 } 1269 1270 /// Ditto 1271 SetIntersection!(less, Rs) setIntersection(alias less = "a < b", Rs...)(Rs ranges) 1272 if (Rs.length >= 2 && allSatisfy!(isInputRange, Rs) && 1273 !is(CommonType!(staticMap!(ElementType, Rs)) == void)) 1274 { 1275 return typeof(return)(ranges); 1276 } 1277 1278 /// 1279 @safe unittest 1280 { 1281 import std.algorithm.comparison : equal; 1282 1283 // sets 1284 int[] a = [ 1, 2, 4, 5, 7, 9 ]; 1285 int[] b = [ 0, 1, 2, 4, 7, 8 ]; 1286 int[] c = [ 0, 1, 4, 5, 7, 8 ]; 1287 assert(equal(setIntersection(a, a), a)); 1288 assert(equal(setIntersection(a, b), [1, 2, 4, 7])); 1289 assert(equal(setIntersection(a, b, c), [1, 4, 7])); 1290 1291 // multisets 1292 int[] d = [ 1, 1, 2, 2, 7, 7 ]; 1293 int[] e = [ 1, 1, 1, 7]; 1294 assert(equal(setIntersection(a, d), [1, 2, 7])); 1295 assert(equal(setIntersection(d, e), [1, 1, 7])); 1296 } 1297 1298 @safe unittest 1299 { 1300 import std.algorithm.comparison : equal; 1301 import std.algorithm.iteration : filter; 1302 1303 int[] a = [ 1, 2, 4, 5, 7, 9 ]; 1304 int[] b = [ 0, 1, 2, 4, 7, 8 ]; 1305 int[] c = [ 0, 1, 4, 5, 7, 8 ]; 1306 int[] d = [ 1, 3, 4 ]; 1307 int[] e = [ 4, 5 ]; 1308 1309 assert(equal(setIntersection(a, a), a)); 1310 assert(equal(setIntersection(a, a, a), a)); 1311 assert(equal(setIntersection(a, b), [1, 2, 4, 7])); 1312 assert(equal(setIntersection(a, b, c), [1, 4, 7])); 1313 assert(equal(setIntersection(a, b, c, d), [1, 4])); 1314 assert(equal(setIntersection(a, b, c, d, e), [4])); 1315 1316 auto inpA = a.filter!(_ => true), inpB = b.filter!(_ => true); 1317 auto inpC = c.filter!(_ => true), inpD = d.filter!(_ => true); 1318 assert(equal(setIntersection(inpA, inpB, inpC, inpD), [1, 4])); 1319 1320 assert(equal(setIntersection(a, b, b, a), [1, 2, 4, 7])); 1321 assert(equal(setIntersection(a, c, b), [1, 4, 7])); 1322 assert(equal(setIntersection(b, a, c), [1, 4, 7])); 1323 assert(equal(setIntersection(b, c, a), [1, 4, 7])); 1324 assert(equal(setIntersection(c, a, b), [1, 4, 7])); 1325 assert(equal(setIntersection(c, b, a), [1, 4, 7])); 1326 } 1327 1328 /** 1329 Lazily computes the symmetric difference of `r1` and `r2`, 1330 i.e. the elements that are present in exactly one of `r1` and $(D 1331 r2). The two ranges are assumed to be sorted by `less`, and the 1332 output is also sorted by `less`. The element types of the two 1333 ranges must have a common type. 1334 1335 If both ranges are sets (without duplicated elements), the resulting 1336 range is going to be a set. If at least one of the ranges is a multiset, 1337 the number of occurences of an element `x` in the resulting range is `abs(a-b)` 1338 where `a` is the number of occurences of `x` in `r1`, `b` is the number of 1339 occurences of `x` in `r2`, and `abs` is the absolute value. 1340 1341 If both arguments are ranges of L-values of the same type then 1342 `SetSymmetricDifference` will also be a range of L-values of 1343 that type. 1344 1345 Params: 1346 less = Predicate the given ranges are sorted by. 1347 r1 = The first range. 1348 r2 = The second range. 1349 1350 Returns: 1351 A range of the symmetric difference between `r1` and `r2`. 1352 1353 See_also: $(LREF setDifference) 1354 */ 1355 struct SetSymmetricDifference(alias less = "a < b", R1, R2) 1356 if (isInputRange!(R1) && isInputRange!(R2)) 1357 { 1358 private: 1359 R1 r1; 1360 R2 r2; 1361 //bool usingR2; 1362 alias comp = binaryFun!(less); 1363 1364 void adjustPosition() 1365 { 1366 while (!r1.empty && !r2.empty) 1367 { 1368 if (comp(r1.front, r2.front) || comp(r2.front, r1.front)) 1369 { 1370 break; 1371 } 1372 // equal, pop both 1373 r1.popFront(); 1374 r2.popFront(); 1375 } 1376 } 1377 1378 public: 1379 /// 1380 this(R1 r1, R2 r2) 1381 { 1382 this.r1 = r1; 1383 this.r2 = r2; 1384 // position to the first element 1385 adjustPosition(); 1386 } 1387 1388 /// 1389 void popFront() 1390 { 1391 assert(!empty, "Can not popFront of empty SetSymmetricDifference"); 1392 if (r1.empty) r2.popFront(); 1393 else if (r2.empty) r1.popFront(); 1394 else 1395 { 1396 // neither is empty 1397 if (comp(r1.front, r2.front)) 1398 { 1399 r1.popFront(); 1400 } 1401 else 1402 { 1403 assert(comp(r2.front, r1.front), "Elements of R1 and R2" 1404 ~ " must be different"); 1405 r2.popFront(); 1406 } 1407 } 1408 adjustPosition(); 1409 } 1410 1411 /// 1412 @property auto ref front() 1413 { 1414 assert(!empty, "Can not get the front of an empty" 1415 ~ " SetSymmetricDifference"); 1416 immutable chooseR1 = r2.empty || !r1.empty && comp(r1.front, r2.front); 1417 assert(chooseR1 || r1.empty || comp(r2.front, r1.front), "Failed to" 1418 ~ " get appropriate front"); 1419 return chooseR1 ? r1.front : r2.front; 1420 } 1421 1422 static if (isForwardRange!R1 && isForwardRange!R2) 1423 { 1424 /// 1425 @property typeof(this) save() 1426 { 1427 auto ret = this; 1428 ret.r1 = r1.save; 1429 ret.r2 = r2.save; 1430 return ret; 1431 } 1432 } 1433 1434 /// 1435 ref auto opSlice() { return this; } 1436 1437 /// 1438 @property bool empty() { return r1.empty && r2.empty; } 1439 } 1440 1441 /// Ditto 1442 SetSymmetricDifference!(less, R1, R2) 1443 setSymmetricDifference(alias less = "a < b", R1, R2) 1444 (R1 r1, R2 r2) 1445 { 1446 return typeof(return)(r1, r2); 1447 } 1448 1449 /// 1450 @safe unittest 1451 { 1452 import std.algorithm.comparison : equal; 1453 import std.range.primitives : isForwardRange; 1454 1455 // sets 1456 int[] a = [ 1, 2, 4, 5, 7, 9 ]; 1457 int[] b = [ 0, 1, 2, 4, 7, 8 ]; 1458 assert(equal(setSymmetricDifference(a, b), [0, 5, 8, 9][])); 1459 static assert(isForwardRange!(typeof(setSymmetricDifference(a, b)))); 1460 1461 //mutisets 1462 int[] c = [1, 1, 1, 1, 2, 2, 2, 4, 5, 6]; 1463 int[] d = [1, 1, 2, 2, 2, 2, 4, 7, 9]; 1464 assert(equal(setSymmetricDifference(c, d), setSymmetricDifference(d, c))); 1465 assert(equal(setSymmetricDifference(c, d), [1, 1, 2, 5, 6, 7, 9])); 1466 } 1467 1468 // https://issues.dlang.org/show_bug.cgi?id=10460 1469 @safe unittest 1470 { 1471 import std.algorithm.comparison : equal; 1472 1473 int[] a = [1, 2]; 1474 double[] b = [2.0, 3.0]; 1475 int[] c = [2, 3]; 1476 1477 alias R1 = typeof(setSymmetricDifference(a, b)); 1478 static assert(is(ElementType!R1 == double)); 1479 static assert(!hasLvalueElements!R1); 1480 1481 alias R2 = typeof(setSymmetricDifference(a, c)); 1482 static assert(is(ElementType!R2 == int)); 1483 static assert(hasLvalueElements!R2); 1484 1485 assert(equal(setSymmetricDifference(a, b), [1.0, 3.0])); 1486 assert(equal(setSymmetricDifference(a, c), [1, 3])); 1487 } 1488 1489 /++ 1490 TODO: once SetUnion got deprecated we can provide the usual definition 1491 (= merge + filter after uniqs) 1492 See: https://github.com/dlang/phobos/pull/4249 1493 /** 1494 Lazily computes the union of two or more ranges `rs`. The ranges 1495 are assumed to be sorted by `less`. Elements in the output are 1496 unique. The element types of all ranges must have a common type. 1497 1498 Params: 1499 less = Predicate the given ranges are sorted by. 1500 rs = The ranges to compute the union for. 1501 1502 Returns: 1503 A range containing the unique union of the given ranges. 1504 1505 See_Also: 1506 $(REF merge, std,algorithm,sorting) 1507 */ 1508 auto setUnion(alias less = "a < b", Rs...) 1509 (Rs rs) 1510 { 1511 import std.algorithm.iteration : uniq; 1512 import std.algorithm.sorting : merge; 1513 return merge!(less, Rs)(rs).uniq; 1514 } 1515 1516 /// 1517 @safe pure nothrow unittest 1518 /// 1519 { 1520 import std.algorithm.comparison : equal; 1521 1522 int[] a = [1, 3, 5]; 1523 int[] b = [2, 3, 4]; 1524 assert(a.setUnion(b).equal([1, 2, 3, 4, 5])); 1525 } 1526 1527 @safe pure nothrow unittest 1528 { 1529 import std.algorithm.comparison : equal; 1530 1531 int[] a = [ 1, 2, 4, 5, 7, 9 ]; 1532 int[] b = [ 0, 1, 2, 4, 7, 8 ]; 1533 double[] c = [ 10.5 ]; 1534 1535 assert(equal(setUnion(a, b), [0, 1, 2, 4, 5, 7, 8, 9][])); 1536 assert(equal(setUnion(a, c, b), 1537 [0, 1, 2, 4, 5, 7, 8, 9, 10.5][])); 1538 } 1539 1540 @safe unittest 1541 { 1542 // save 1543 import std.range : dropOne; 1544 int[] a = [0, 1, 2]; 1545 int[] b = [0, 3]; 1546 auto arr = a.setUnion(b); 1547 assert(arr.front == 0); 1548 assert(arr.save.dropOne.front == 1); 1549 assert(arr.front == 0); 1550 } 1551 1552 @nogc @safe pure nothrow unittest 1553 { 1554 import std.algorithm.comparison : equal; 1555 1556 static immutable a = [1, 3, 5]; 1557 static immutable b = [2, 4]; 1558 static immutable r = [1, 2, 3, 4, 5]; 1559 assert(a.setUnion(b).equal(r)); 1560 } 1561 1562 @safe pure nothrow unittest 1563 { 1564 import std.algorithm.comparison : equal; 1565 import std.internal.test.dummyrange; 1566 import std.range : iota; 1567 1568 auto dummyResult1 = [1, 1.5, 2, 3, 4, 5, 5.5, 6, 7, 8, 9, 10]; 1569 auto dummyResult2 = iota(1, 11); 1570 foreach (DummyType; AllDummyRanges) 1571 { 1572 DummyType d; 1573 assert(d.setUnion([1, 1.5, 5.5]).equal(dummyResult1)); 1574 assert(d.setUnion(d).equal(dummyResult2)); 1575 } 1576 } 1577 ++/