1 // Written in the D programming language. 2 3 /** This module contains the $(LREF Complex) type, which is used to represent 4 complex numbers, along with related mathematical operations and functions. 5 6 $(LREF Complex) will eventually 7 $(DDLINK deprecate, Deprecated Features, replace) 8 the built-in types `cfloat`, `cdouble`, `creal`, `ifloat`, 9 `idouble`, and `ireal`. 10 11 Macros: 12 TABLE_SV = <table border="1" cellpadding="4" cellspacing="0"> 13 <caption>Special Values</caption> 14 $0</table> 15 PLUSMN = ± 16 NAN = $(RED NAN) 17 INFIN = ∞ 18 PI = π 19 20 Authors: Lars Tandle Kyllingstad, Don Clugston 21 Copyright: Copyright (c) 2010, Lars T. Kyllingstad. 22 License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0) 23 Source: $(PHOBOSSRC std/complex.d) 24 */ 25 module std.complex; 26 27 import std.traits; 28 29 /** Helper function that returns a complex number with the specified 30 real and imaginary parts. 31 32 Params: 33 R = (template parameter) type of real part of complex number 34 I = (template parameter) type of imaginary part of complex number 35 36 re = real part of complex number to be constructed 37 im = (optional) imaginary part of complex number, 0 if omitted. 38 39 Returns: 40 `Complex` instance with real and imaginary parts set 41 to the values provided as input. If neither `re` nor 42 `im` are floating-point numbers, the return type will 43 be `Complex!double`. Otherwise, the return type is 44 deduced using $(D std.traits.CommonType!(R, I)). 45 */ 46 auto complex(R)(const R re) @safe pure nothrow @nogc 47 if (is(R : double)) 48 { 49 static if (isFloatingPoint!R) 50 return Complex!R(re, 0); 51 else 52 return Complex!double(re, 0); 53 } 54 55 /// ditto 56 auto complex(R, I)(const R re, const I im) @safe pure nothrow @nogc 57 if (is(R : double) && is(I : double)) 58 { 59 static if (isFloatingPoint!R || isFloatingPoint!I) 60 return Complex!(CommonType!(R, I))(re, im); 61 else 62 return Complex!double(re, im); 63 } 64 65 /// 66 @safe pure nothrow unittest 67 { 68 auto a = complex(1.0); 69 static assert(is(typeof(a) == Complex!double)); 70 assert(a.re == 1.0); 71 assert(a.im == 0.0); 72 73 auto b = complex(2.0L); 74 static assert(is(typeof(b) == Complex!real)); 75 assert(b.re == 2.0L); 76 assert(b.im == 0.0L); 77 78 auto c = complex(1.0, 2.0); 79 static assert(is(typeof(c) == Complex!double)); 80 assert(c.re == 1.0); 81 assert(c.im == 2.0); 82 83 auto d = complex(3.0, 4.0L); 84 static assert(is(typeof(d) == Complex!real)); 85 assert(d.re == 3.0); 86 assert(d.im == 4.0L); 87 88 auto e = complex(1); 89 static assert(is(typeof(e) == Complex!double)); 90 assert(e.re == 1); 91 assert(e.im == 0); 92 93 auto f = complex(1L, 2); 94 static assert(is(typeof(f) == Complex!double)); 95 assert(f.re == 1L); 96 assert(f.im == 2); 97 98 auto g = complex(3, 4.0L); 99 static assert(is(typeof(g) == Complex!real)); 100 assert(g.re == 3); 101 assert(g.im == 4.0L); 102 } 103 104 105 /** A complex number parametrised by a type `T`, which must be either 106 `float`, `double` or `real`. 107 */ 108 struct Complex(T) 109 if (isFloatingPoint!T) 110 { 111 import std.format.spec : FormatSpec; 112 import std.range.primitives : isOutputRange; 113 114 /** The real part of the number. */ 115 T re; 116 117 /** The imaginary part of the number. */ 118 T im; 119 120 /** Converts the complex number to a string representation. 121 122 The second form of this function is usually not called directly; 123 instead, it is used via $(REF format, std,string), as shown in the examples 124 below. Supported format characters are 'e', 'f', 'g', 'a', and 's'. 125 126 See the $(MREF std, format) and $(REF format, std,string) 127 documentation for more information. 128 */ 129 string toString() const @safe /* TODO: pure nothrow */ 130 { 131 import std.exception : assumeUnique; 132 char[] buf; 133 buf.reserve(100); 134 auto fmt = FormatSpec!char("%s"); 135 toString((const(char)[] s) { buf ~= s; }, fmt); 136 static trustedAssumeUnique(T)(T t) @trusted { return assumeUnique(t); } 137 return trustedAssumeUnique(buf); 138 } 139 140 static if (is(T == double)) 141 /// 142 @safe unittest 143 { 144 auto c = complex(1.2, 3.4); 145 146 // Vanilla toString formatting: 147 assert(c.toString() == "1.2+3.4i"); 148 149 // Formatting with std.string.format specs: the precision and width 150 // specifiers apply to both the real and imaginary parts of the 151 // complex number. 152 import std.format : format; 153 assert(format("%.2f", c) == "1.20+3.40i"); 154 assert(format("%4.1f", c) == " 1.2+ 3.4i"); 155 } 156 157 /// ditto 158 void toString(Writer, Char)(scope Writer w, scope const ref FormatSpec!Char formatSpec) const 159 if (isOutputRange!(Writer, const(Char)[])) 160 { 161 import std.format.write : formatValue; 162 import std.math.traits : signbit; 163 import std.range.primitives : put; 164 formatValue(w, re, formatSpec); 165 if (signbit(im) == 0) 166 put(w, "+"); 167 formatValue(w, im, formatSpec); 168 put(w, "i"); 169 } 170 171 @safe pure nothrow @nogc: 172 173 /** Construct a complex number with the specified real and 174 imaginary parts. In the case where a single argument is passed 175 that is not complex, the imaginary part of the result will be 176 zero. 177 */ 178 this(R : T)(Complex!R z) 179 { 180 re = z.re; 181 im = z.im; 182 } 183 184 /// ditto 185 this(Rx : T, Ry : T)(const Rx x, const Ry y) 186 { 187 re = x; 188 im = y; 189 } 190 191 /// ditto 192 this(R : T)(const R r) 193 { 194 re = r; 195 im = 0; 196 } 197 198 // ASSIGNMENT OPERATORS 199 200 // this = complex 201 ref Complex opAssign(R : T)(Complex!R z) 202 { 203 re = z.re; 204 im = z.im; 205 return this; 206 } 207 208 // this = numeric 209 ref Complex opAssign(R : T)(const R r) 210 { 211 re = r; 212 im = 0; 213 return this; 214 } 215 216 // COMPARISON OPERATORS 217 218 // this == complex 219 bool opEquals(R : T)(Complex!R z) const 220 { 221 return re == z.re && im == z.im; 222 } 223 224 // this == numeric 225 bool opEquals(R : T)(const R r) const 226 { 227 return re == r && im == 0; 228 } 229 230 // UNARY OPERATORS 231 232 // +complex 233 Complex opUnary(string op)() const 234 if (op == "+") 235 { 236 return this; 237 } 238 239 // -complex 240 Complex opUnary(string op)() const 241 if (op == "-") 242 { 243 return Complex(-re, -im); 244 } 245 246 // BINARY OPERATORS 247 248 // complex op complex 249 Complex!(CommonType!(T,R)) opBinary(string op, R)(Complex!R z) const 250 { 251 alias C = typeof(return); 252 auto w = C(this.re, this.im); 253 return w.opOpAssign!(op)(z); 254 } 255 256 // complex op numeric 257 Complex!(CommonType!(T,R)) opBinary(string op, R)(const R r) const 258 if (isNumeric!R) 259 { 260 alias C = typeof(return); 261 auto w = C(this.re, this.im); 262 return w.opOpAssign!(op)(r); 263 } 264 265 // numeric + complex, numeric * complex 266 Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(const R r) const 267 if ((op == "+" || op == "*") && (isNumeric!R)) 268 { 269 return opBinary!(op)(r); 270 } 271 272 // numeric - complex 273 Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(const R r) const 274 if (op == "-" && isNumeric!R) 275 { 276 return Complex(r - re, -im); 277 } 278 279 // numeric / complex 280 Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(const R r) const 281 if (op == "/" && isNumeric!R) 282 { 283 version (FastMath) 284 { 285 // Compute norm(this) 286 immutable norm = re * re + im * im; 287 // Compute r * conj(this) 288 immutable prod_re = r * re; 289 immutable prod_im = r * -im; 290 // Divide the product by the norm 291 typeof(return) w = void; 292 w.re = prod_re / norm; 293 w.im = prod_im / norm; 294 return w; 295 } 296 else 297 { 298 import core.math : fabs; 299 typeof(return) w = void; 300 if (fabs(re) < fabs(im)) 301 { 302 immutable ratio = re/im; 303 immutable rdivd = r/(re*ratio + im); 304 305 w.re = rdivd*ratio; 306 w.im = -rdivd; 307 } 308 else 309 { 310 immutable ratio = im/re; 311 immutable rdivd = r/(re + im*ratio); 312 313 w.re = rdivd; 314 w.im = -rdivd*ratio; 315 } 316 317 return w; 318 } 319 } 320 321 // numeric ^^ complex 322 Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(const R lhs) const 323 if (op == "^^" && isNumeric!R) 324 { 325 import core.math : cos, sin; 326 import std.math.exponential : exp, log; 327 import std.math.constants : PI; 328 Unqual!(CommonType!(T, R)) ab = void, ar = void; 329 330 if (lhs >= 0) 331 { 332 // r = lhs 333 // theta = 0 334 ab = lhs ^^ this.re; 335 ar = log(lhs) * this.im; 336 } 337 else 338 { 339 // r = -lhs 340 // theta = PI 341 ab = (-lhs) ^^ this.re * exp(-PI * this.im); 342 ar = PI * this.re + log(-lhs) * this.im; 343 } 344 345 return typeof(return)(ab * cos(ar), ab * sin(ar)); 346 } 347 348 // OP-ASSIGN OPERATORS 349 350 // complex += complex, complex -= complex 351 ref Complex opOpAssign(string op, C)(const C z) 352 if ((op == "+" || op == "-") && is(C R == Complex!R)) 353 { 354 mixin ("re "~op~"= z.re;"); 355 mixin ("im "~op~"= z.im;"); 356 return this; 357 } 358 359 // complex *= complex 360 ref Complex opOpAssign(string op, C)(const C z) 361 if (op == "*" && is(C R == Complex!R)) 362 { 363 auto temp = re*z.re - im*z.im; 364 im = im*z.re + re*z.im; 365 re = temp; 366 return this; 367 } 368 369 // complex /= complex 370 ref Complex opOpAssign(string op, C)(const C z) 371 if (op == "/" && is(C R == Complex!R)) 372 { 373 version (FastMath) 374 { 375 // Compute norm(z) 376 immutable norm = z.re * z.re + z.im * z.im; 377 // Compute this * conj(z) 378 immutable prod_re = re * z.re - im * -z.im; 379 immutable prod_im = im * z.re + re * -z.im; 380 // Divide the product by the norm 381 re = prod_re / norm; 382 im = prod_im / norm; 383 return this; 384 } 385 else 386 { 387 import core.math : fabs; 388 if (fabs(z.re) < fabs(z.im)) 389 { 390 immutable ratio = z.re/z.im; 391 immutable denom = z.re*ratio + z.im; 392 393 immutable temp = (re*ratio + im)/denom; 394 im = (im*ratio - re)/denom; 395 re = temp; 396 } 397 else 398 { 399 immutable ratio = z.im/z.re; 400 immutable denom = z.re + z.im*ratio; 401 402 immutable temp = (re + im*ratio)/denom; 403 im = (im - re*ratio)/denom; 404 re = temp; 405 } 406 return this; 407 } 408 } 409 410 // complex ^^= complex 411 ref Complex opOpAssign(string op, C)(const C z) 412 if (op == "^^" && is(C R == Complex!R)) 413 { 414 import core.math : cos, sin; 415 import std.math.exponential : exp, log; 416 immutable r = abs(this); 417 immutable t = arg(this); 418 immutable ab = r^^z.re * exp(-t*z.im); 419 immutable ar = t*z.re + log(r)*z.im; 420 421 re = ab*cos(ar); 422 im = ab*sin(ar); 423 return this; 424 } 425 426 // complex += numeric, complex -= numeric 427 ref Complex opOpAssign(string op, U : T)(const U a) 428 if (op == "+" || op == "-") 429 { 430 mixin ("re "~op~"= a;"); 431 return this; 432 } 433 434 // complex *= numeric, complex /= numeric 435 ref Complex opOpAssign(string op, U : T)(const U a) 436 if (op == "*" || op == "/") 437 { 438 mixin ("re "~op~"= a;"); 439 mixin ("im "~op~"= a;"); 440 return this; 441 } 442 443 // complex ^^= real 444 ref Complex opOpAssign(string op, R)(const R r) 445 if (op == "^^" && isFloatingPoint!R) 446 { 447 import core.math : cos, sin; 448 immutable ab = abs(this)^^r; 449 immutable ar = arg(this)*r; 450 re = ab*cos(ar); 451 im = ab*sin(ar); 452 return this; 453 } 454 455 // complex ^^= int 456 ref Complex opOpAssign(string op, U)(const U i) 457 if (op == "^^" && isIntegral!U) 458 { 459 switch (i) 460 { 461 case 0: 462 re = 1.0; 463 im = 0.0; 464 break; 465 case 1: 466 // identity; do nothing 467 break; 468 case 2: 469 this *= this; 470 break; 471 case 3: 472 auto z = this; 473 this *= z; 474 this *= z; 475 break; 476 default: 477 this ^^= cast(real) i; 478 } 479 return this; 480 } 481 482 /** Returns a complex number instance that correponds in size and in ABI 483 to the associated C compiler's `_Complex` type. 484 */ 485 auto toNative() 486 { 487 import core.stdc.config : c_complex_float, c_complex_double, c_complex_real; 488 static if (is(T == float)) 489 return c_complex_float(re, im); 490 else static if (is(T == double)) 491 return c_complex_double(re, im); 492 else 493 return c_complex_real(re, im); 494 } 495 } 496 497 @safe pure nothrow unittest 498 { 499 import std.complex; 500 static import core.math; 501 import std.math; 502 503 enum EPS = double.epsilon; 504 auto c1 = complex(1.0, 1.0); 505 506 // Check unary operations. 507 auto c2 = Complex!double(0.5, 2.0); 508 509 assert(c2 == +c2); 510 511 assert((-c2).re == -(c2.re)); 512 assert((-c2).im == -(c2.im)); 513 assert(c2 == -(-c2)); 514 515 // Check complex-complex operations. 516 auto cpc = c1 + c2; 517 assert(cpc.re == c1.re + c2.re); 518 assert(cpc.im == c1.im + c2.im); 519 520 auto cmc = c1 - c2; 521 assert(cmc.re == c1.re - c2.re); 522 assert(cmc.im == c1.im - c2.im); 523 524 auto ctc = c1 * c2; 525 assert(isClose(abs(ctc), abs(c1)*abs(c2), EPS)); 526 assert(isClose(arg(ctc), arg(c1)+arg(c2), EPS)); 527 528 auto cdc = c1 / c2; 529 assert(isClose(abs(cdc), abs(c1)/abs(c2), EPS)); 530 assert(isClose(arg(cdc), arg(c1)-arg(c2), EPS)); 531 532 auto cec = c1^^c2; 533 assert(isClose(cec.re, 0.1152413197994, 1e-12)); 534 assert(isClose(cec.im, 0.2187079045274, 1e-12)); 535 536 // Check complex-real operations. 537 double a = 123.456; 538 539 auto cpr = c1 + a; 540 assert(cpr.re == c1.re + a); 541 assert(cpr.im == c1.im); 542 543 auto cmr = c1 - a; 544 assert(cmr.re == c1.re - a); 545 assert(cmr.im == c1.im); 546 547 auto ctr = c1 * a; 548 assert(ctr.re == c1.re*a); 549 assert(ctr.im == c1.im*a); 550 551 auto cdr = c1 / a; 552 assert(isClose(abs(cdr), abs(c1)/a, EPS)); 553 assert(isClose(arg(cdr), arg(c1), EPS)); 554 555 auto cer = c1^^3.0; 556 assert(isClose(abs(cer), abs(c1)^^3, EPS)); 557 assert(isClose(arg(cer), arg(c1)*3, EPS)); 558 559 auto rpc = a + c1; 560 assert(rpc == cpr); 561 562 auto rmc = a - c1; 563 assert(rmc.re == a-c1.re); 564 assert(rmc.im == -c1.im); 565 566 auto rtc = a * c1; 567 assert(rtc == ctr); 568 569 auto rdc = a / c1; 570 assert(isClose(abs(rdc), a/abs(c1), EPS)); 571 assert(isClose(arg(rdc), -arg(c1), EPS)); 572 573 rdc = a / c2; 574 assert(isClose(abs(rdc), a/abs(c2), EPS)); 575 assert(isClose(arg(rdc), -arg(c2), EPS)); 576 577 auto rec1a = 1.0 ^^ c1; 578 assert(rec1a.re == 1.0); 579 assert(rec1a.im == 0.0); 580 581 auto rec2a = 1.0 ^^ c2; 582 assert(rec2a.re == 1.0); 583 assert(rec2a.im == 0.0); 584 585 auto rec1b = (-1.0) ^^ c1; 586 assert(isClose(abs(rec1b), std.math.exp(-PI * c1.im), EPS)); 587 auto arg1b = arg(rec1b); 588 /* The argument _should_ be PI, but floating-point rounding error 589 * means that in fact the imaginary part is very slightly negative. 590 */ 591 assert(isClose(arg1b, PI, EPS) || isClose(arg1b, -PI, EPS)); 592 593 auto rec2b = (-1.0) ^^ c2; 594 assert(isClose(abs(rec2b), std.math.exp(-2 * PI), EPS)); 595 assert(isClose(arg(rec2b), PI_2, EPS)); 596 597 auto rec3a = 0.79 ^^ complex(6.8, 5.7); 598 auto rec3b = complex(0.79, 0.0) ^^ complex(6.8, 5.7); 599 assert(isClose(rec3a.re, rec3b.re, 1e-14)); 600 assert(isClose(rec3a.im, rec3b.im, 1e-14)); 601 602 auto rec4a = (-0.79) ^^ complex(6.8, 5.7); 603 auto rec4b = complex(-0.79, 0.0) ^^ complex(6.8, 5.7); 604 assert(isClose(rec4a.re, rec4b.re, 1e-14)); 605 assert(isClose(rec4a.im, rec4b.im, 1e-14)); 606 607 auto rer = a ^^ complex(2.0, 0.0); 608 auto rcheck = a ^^ 2.0; 609 static assert(is(typeof(rcheck) == double)); 610 assert(feqrel(rer.re, rcheck) == double.mant_dig); 611 assert(isIdentical(rer.re, rcheck)); 612 assert(rer.im == 0.0); 613 614 auto rer2 = (-a) ^^ complex(2.0, 0.0); 615 rcheck = (-a) ^^ 2.0; 616 assert(feqrel(rer2.re, rcheck) == double.mant_dig); 617 assert(isIdentical(rer2.re, rcheck)); 618 assert(isClose(rer2.im, 0.0, 0.0, 1e-10)); 619 620 auto rer3 = (-a) ^^ complex(-2.0, 0.0); 621 rcheck = (-a) ^^ (-2.0); 622 assert(feqrel(rer3.re, rcheck) == double.mant_dig); 623 assert(isIdentical(rer3.re, rcheck)); 624 assert(isClose(rer3.im, 0.0, 0.0, EPS)); 625 626 auto rer4 = a ^^ complex(-2.0, 0.0); 627 rcheck = a ^^ (-2.0); 628 assert(feqrel(rer4.re, rcheck) == double.mant_dig); 629 assert(isIdentical(rer4.re, rcheck)); 630 assert(rer4.im == 0.0); 631 632 // Check Complex-int operations. 633 foreach (i; 0 .. 6) 634 { 635 auto cei = c1^^i; 636 assert(isClose(abs(cei), abs(c1)^^i, 1e-14)); 637 // Use cos() here to deal with arguments that go outside 638 // the (-pi,pi] interval (only an issue for i>3). 639 assert(isClose(core.math.cos(arg(cei)), core.math.cos(arg(c1)*i), 1e-14)); 640 } 641 642 // Check operations between different complex types. 643 auto cf = Complex!float(1.0, 1.0); 644 auto cr = Complex!real(1.0, 1.0); 645 auto c1pcf = c1 + cf; 646 auto c1pcr = c1 + cr; 647 static assert(is(typeof(c1pcf) == Complex!double)); 648 static assert(is(typeof(c1pcr) == Complex!real)); 649 assert(c1pcf.re == c1pcr.re); 650 assert(c1pcf.im == c1pcr.im); 651 652 auto c1c = c1; 653 auto c2c = c2; 654 655 c1c /= c1; 656 assert(isClose(c1c.re, 1.0, EPS)); 657 assert(isClose(c1c.im, 0.0, 0.0, EPS)); 658 659 c1c = c1; 660 c1c /= c2; 661 assert(isClose(c1c.re, 0.5882352941177, 1e-12)); 662 assert(isClose(c1c.im, -0.3529411764706, 1e-12)); 663 664 c2c /= c1; 665 assert(isClose(c2c.re, 1.25, EPS)); 666 assert(isClose(c2c.im, 0.75, EPS)); 667 668 c2c = c2; 669 c2c /= c2; 670 assert(isClose(c2c.re, 1.0, EPS)); 671 assert(isClose(c2c.im, 0.0, 0.0, EPS)); 672 } 673 674 @safe pure nothrow unittest 675 { 676 // Initialization 677 Complex!double a = 1; 678 assert(a.re == 1 && a.im == 0); 679 Complex!double b = 1.0; 680 assert(b.re == 1.0 && b.im == 0); 681 Complex!double c = Complex!real(1.0, 2); 682 assert(c.re == 1.0 && c.im == 2); 683 } 684 685 @safe pure nothrow unittest 686 { 687 // Assignments and comparisons 688 Complex!double z; 689 690 z = 1; 691 assert(z == 1); 692 assert(z.re == 1.0 && z.im == 0.0); 693 694 z = 2.0; 695 assert(z == 2.0); 696 assert(z.re == 2.0 && z.im == 0.0); 697 698 z = 1.0L; 699 assert(z == 1.0L); 700 assert(z.re == 1.0 && z.im == 0.0); 701 702 auto w = Complex!real(1.0, 1.0); 703 z = w; 704 assert(z == w); 705 assert(z.re == 1.0 && z.im == 1.0); 706 707 auto c = Complex!float(2.0, 2.0); 708 z = c; 709 assert(z == c); 710 assert(z.re == 2.0 && z.im == 2.0); 711 } 712 713 714 /* Makes Complex!(Complex!T) fold to Complex!T. 715 716 The rationale for this is that just like the real line is a 717 subspace of the complex plane, the complex plane is a subspace 718 of itself. Example of usage: 719 --- 720 Complex!T addI(T)(T x) 721 { 722 return x + Complex!T(0.0, 1.0); 723 } 724 --- 725 The above will work if T is both real and complex. 726 */ 727 template Complex(T) 728 if (is(T R == Complex!R)) 729 { 730 alias Complex = T; 731 } 732 733 @safe pure nothrow unittest 734 { 735 static assert(is(Complex!(Complex!real) == Complex!real)); 736 737 Complex!T addI(T)(T x) 738 { 739 return x + Complex!T(0.0, 1.0); 740 } 741 742 auto z1 = addI(1.0); 743 assert(z1.re == 1.0 && z1.im == 1.0); 744 745 enum one = Complex!double(1.0, 0.0); 746 auto z2 = addI(one); 747 assert(z1 == z2); 748 } 749 750 751 /** 752 Params: z = A complex number. 753 Returns: The absolute value (or modulus) of `z`. 754 */ 755 T abs(T)(Complex!T z) @safe pure nothrow @nogc 756 { 757 import std.math.algebraic : hypot; 758 return hypot(z.re, z.im); 759 } 760 761 /// 762 @safe pure nothrow unittest 763 { 764 static import core.math; 765 assert(abs(complex(1.0)) == 1.0); 766 assert(abs(complex(0.0, 1.0)) == 1.0); 767 assert(abs(complex(1.0L, -2.0L)) == core.math.sqrt(5.0L)); 768 } 769 770 @safe pure nothrow @nogc unittest 771 { 772 static import core.math; 773 assert(abs(complex(0.0L, -3.2L)) == 3.2L); 774 assert(abs(complex(0.0L, 71.6L)) == 71.6L); 775 assert(abs(complex(-1.0L, 1.0L)) == core.math.sqrt(2.0L)); 776 } 777 778 @safe pure nothrow @nogc unittest 779 { 780 import std.meta : AliasSeq; 781 static foreach (T; AliasSeq!(float, double, real)) 782 {{ 783 static import std.math; 784 Complex!T a = complex(T(-12), T(3)); 785 T b = std.math.hypot(a.re, a.im); 786 assert(std.math.isClose(abs(a), b)); 787 assert(std.math.isClose(abs(-a), b)); 788 }} 789 } 790 791 /++ 792 Params: 793 z = A complex number. 794 x = A real number. 795 Returns: The squared modulus of `z`. 796 For genericity, if called on a real number, returns its square. 797 +/ 798 T sqAbs(T)(Complex!T z) @safe pure nothrow @nogc 799 { 800 return z.re*z.re + z.im*z.im; 801 } 802 803 /// 804 @safe pure nothrow unittest 805 { 806 import std.math.operations : isClose; 807 assert(sqAbs(complex(0.0)) == 0.0); 808 assert(sqAbs(complex(1.0)) == 1.0); 809 assert(sqAbs(complex(0.0, 1.0)) == 1.0); 810 assert(isClose(sqAbs(complex(1.0L, -2.0L)), 5.0L)); 811 assert(isClose(sqAbs(complex(-3.0L, 1.0L)), 10.0L)); 812 assert(isClose(sqAbs(complex(1.0f,-1.0f)), 2.0f)); 813 } 814 815 /// ditto 816 T sqAbs(T)(const T x) @safe pure nothrow @nogc 817 if (isFloatingPoint!T) 818 { 819 return x*x; 820 } 821 822 @safe pure nothrow unittest 823 { 824 import std.math.operations : isClose; 825 assert(sqAbs(0.0) == 0.0); 826 assert(sqAbs(-1.0) == 1.0); 827 assert(isClose(sqAbs(-3.0L), 9.0L)); 828 assert(isClose(sqAbs(-5.0f), 25.0f)); 829 } 830 831 832 /** 833 Params: z = A complex number. 834 Returns: The argument (or phase) of `z`. 835 */ 836 T arg(T)(Complex!T z) @safe pure nothrow @nogc 837 { 838 import std.math.trigonometry : atan2; 839 return atan2(z.im, z.re); 840 } 841 842 /// 843 @safe pure nothrow unittest 844 { 845 import std.math.constants : PI_2, PI_4; 846 assert(arg(complex(1.0)) == 0.0); 847 assert(arg(complex(0.0L, 1.0L)) == PI_2); 848 assert(arg(complex(1.0L, 1.0L)) == PI_4); 849 } 850 851 852 /** 853 * Extracts the norm of a complex number. 854 * Params: 855 * z = A complex number 856 * Returns: 857 * The squared magnitude of `z`. 858 */ 859 T norm(T)(Complex!T z) @safe pure nothrow @nogc 860 { 861 return z.re * z.re + z.im * z.im; 862 } 863 864 /// 865 @safe pure nothrow @nogc unittest 866 { 867 import std.math.operations : isClose; 868 import std.math.constants : PI; 869 assert(norm(complex(3.0, 4.0)) == 25.0); 870 assert(norm(fromPolar(5.0, 0.0)) == 25.0); 871 assert(isClose(norm(fromPolar(5.0L, PI / 6)), 25.0L)); 872 assert(isClose(norm(fromPolar(5.0L, 13 * PI / 6)), 25.0L)); 873 } 874 875 876 /** 877 Params: z = A complex number. 878 Returns: The complex conjugate of `z`. 879 */ 880 Complex!T conj(T)(Complex!T z) @safe pure nothrow @nogc 881 { 882 return Complex!T(z.re, -z.im); 883 } 884 885 /// 886 @safe pure nothrow unittest 887 { 888 assert(conj(complex(1.0)) == complex(1.0)); 889 assert(conj(complex(1.0, 2.0)) == complex(1.0, -2.0)); 890 } 891 892 @safe pure nothrow @nogc unittest 893 { 894 import std.meta : AliasSeq; 895 static foreach (T; AliasSeq!(float, double, real)) 896 {{ 897 auto c = Complex!T(7, 3L); 898 assert(conj(c) == Complex!T(7, -3L)); 899 auto z = Complex!T(0, -3.2L); 900 assert(conj(z) == -z); 901 }} 902 } 903 904 /** 905 * Returns the projection of `z` onto the Riemann sphere. 906 * Params: 907 * z = A complex number 908 * Returns: 909 * The projection of `z` onto the Riemann sphere. 910 */ 911 Complex!T proj(T)(Complex!T z) 912 { 913 static import std.math; 914 915 if (std.math.isInfinity(z.re) || std.math.isInfinity(z.im)) 916 return Complex!T(T.infinity, std.math.copysign(0.0, z.im)); 917 918 return z; 919 } 920 921 /// 922 @safe pure nothrow unittest 923 { 924 assert(proj(complex(1.0)) == complex(1.0)); 925 assert(proj(complex(double.infinity, 5.0)) == complex(double.infinity, 0.0)); 926 assert(proj(complex(5.0, -double.infinity)) == complex(double.infinity, -0.0)); 927 } 928 929 930 /** 931 Constructs a complex number given its absolute value and argument. 932 Params: 933 modulus = The modulus 934 argument = The argument 935 Returns: The complex number with the given modulus and argument. 936 */ 937 Complex!(CommonType!(T, U)) fromPolar(T, U)(const T modulus, const U argument) 938 @safe pure nothrow @nogc 939 { 940 import core.math : sin, cos; 941 return Complex!(CommonType!(T,U)) 942 (modulus*cos(argument), modulus*sin(argument)); 943 } 944 945 /// 946 @safe pure nothrow unittest 947 { 948 import core.math; 949 import std.math.operations : isClose; 950 import std.math.algebraic : sqrt; 951 import std.math.constants : PI_4; 952 auto z = fromPolar(core.math.sqrt(2.0L), PI_4); 953 assert(isClose(z.re, 1.0L)); 954 assert(isClose(z.im, 1.0L)); 955 } 956 957 version (StdUnittest) 958 { 959 // Helper function for comparing two Complex numbers. 960 int ceqrel(T)(const Complex!T x, const Complex!T y) @safe pure nothrow @nogc 961 { 962 import std.math.operations : feqrel; 963 const r = feqrel(x.re, y.re); 964 const i = feqrel(x.im, y.im); 965 return r < i ? r : i; 966 } 967 } 968 969 /** 970 Trigonometric functions on complex numbers. 971 972 Params: z = A complex number. 973 Returns: The sine, cosine and tangent of `z`, respectively. 974 */ 975 Complex!T sin(T)(Complex!T z) @safe pure nothrow @nogc 976 { 977 auto cs = expi(z.re); 978 auto csh = coshisinh(z.im); 979 return typeof(return)(cs.im * csh.re, cs.re * csh.im); 980 } 981 982 /// 983 @safe pure nothrow unittest 984 { 985 static import core.math; 986 assert(sin(complex(0.0)) == 0.0); 987 assert(sin(complex(2.0, 0)) == core.math.sin(2.0)); 988 } 989 990 @safe pure nothrow unittest 991 { 992 static import core.math; 993 assert(ceqrel(sin(complex(2.0L, 0)), complex(core.math.sin(2.0L))) >= real.mant_dig - 1); 994 } 995 996 /// ditto 997 Complex!T cos(T)(Complex!T z) @safe pure nothrow @nogc 998 { 999 auto cs = expi(z.re); 1000 auto csh = coshisinh(z.im); 1001 return typeof(return)(cs.re * csh.re, - cs.im * csh.im); 1002 } 1003 1004 /// 1005 @safe pure nothrow unittest 1006 { 1007 static import core.math; 1008 static import std.math; 1009 assert(cos(complex(0.0)) == 1.0); 1010 assert(cos(complex(1.3, 0.0)) == core.math.cos(1.3)); 1011 assert(cos(complex(0.0, 5.2)) == std.math.cosh(5.2)); 1012 } 1013 1014 @safe pure nothrow unittest 1015 { 1016 static import core.math; 1017 static import std.math; 1018 assert(ceqrel(cos(complex(0, 5.2L)), complex(std.math.cosh(5.2L), 0.0L)) >= real.mant_dig - 1); 1019 assert(ceqrel(cos(complex(1.3L)), complex(core.math.cos(1.3L))) >= real.mant_dig - 1); 1020 } 1021 1022 /// ditto 1023 Complex!T tan(T)(Complex!T z) @safe pure nothrow @nogc 1024 { 1025 return sin(z) / cos(z); 1026 } 1027 1028 /// 1029 @safe pure nothrow @nogc unittest 1030 { 1031 static import std.math; 1032 1033 int ceqrel(T)(const Complex!T x, const Complex!T y) @safe pure nothrow @nogc 1034 { 1035 import std.math.operations : feqrel; 1036 const r = feqrel(x.re, y.re); 1037 const i = feqrel(x.im, y.im); 1038 return r < i ? r : i; 1039 } 1040 assert(ceqrel(tan(complex(1.0, 0.0)), complex(std.math.tan(1.0), 0.0)) >= double.mant_dig - 2); 1041 assert(ceqrel(tan(complex(0.0, 1.0)), complex(0.0, std.math.tanh(1.0))) >= double.mant_dig - 2); 1042 } 1043 1044 /** 1045 Inverse trigonometric functions on complex numbers. 1046 1047 Params: z = A complex number. 1048 Returns: The arcsine, arccosine and arctangent of `z`, respectively. 1049 */ 1050 Complex!T asin(T)(Complex!T z) @safe pure nothrow @nogc 1051 { 1052 auto ash = asinh(Complex!T(-z.im, z.re)); 1053 return Complex!T(ash.im, -ash.re); 1054 } 1055 1056 /// 1057 @safe pure nothrow unittest 1058 { 1059 import std.math.operations : isClose; 1060 import std.math.constants : PI; 1061 assert(asin(complex(0.0)) == 0.0); 1062 assert(isClose(asin(complex(0.5L)), PI / 6, 0, 1e-15)); 1063 } 1064 1065 @safe pure nothrow unittest 1066 { 1067 import std.math.operations : isClose; 1068 import std.math.constants : PI; 1069 version (DigitalMars) {} else // Disabled because of https://issues.dlang.org/show_bug.cgi?id=21376 1070 assert(isClose(asin(complex(0.5f)), float(PI) / 6)); 1071 } 1072 1073 /// ditto 1074 Complex!T acos(T)(Complex!T z) @safe pure nothrow @nogc 1075 { 1076 static import std.math; 1077 auto as = asin(z); 1078 return Complex!T(T(std.math.PI_2) - as.re, as.im); 1079 } 1080 1081 /// 1082 @safe pure nothrow unittest 1083 { 1084 import std.math.operations : isClose; 1085 import std.math.constants : PI; 1086 import std.math.trigonometry : std_math_acos = acos; 1087 assert(acos(complex(0.0)) == std_math_acos(0.0)); 1088 assert(isClose(acos(complex(0.5L)), PI / 3, 0, 1e-15)); 1089 } 1090 1091 @safe pure nothrow unittest 1092 { 1093 import std.math.operations : isClose; 1094 import std.math.constants : PI; 1095 version (DigitalMars) {} else // Disabled because of https://issues.dlang.org/show_bug.cgi?id=21376 1096 assert(isClose(acos(complex(0.5f)), float(PI) / 3)); 1097 } 1098 1099 /// ditto 1100 Complex!T atan(T)(Complex!T z) @safe pure nothrow @nogc 1101 { 1102 static import std.math; 1103 const T re2 = z.re * z.re; 1104 const T x = 1 - re2 - z.im * z.im; 1105 1106 T num = z.im + 1; 1107 T den = z.im - 1; 1108 1109 num = re2 + num * num; 1110 den = re2 + den * den; 1111 1112 return Complex!T(T(0.5) * std.math.atan2(2 * z.re, x), 1113 T(0.25) * std.math.log(num / den)); 1114 } 1115 1116 /// 1117 @safe pure nothrow @nogc unittest 1118 { 1119 import std.math.operations : isClose; 1120 import std.math.constants : PI; 1121 assert(atan(complex(0.0)) == 0.0); 1122 assert(isClose(atan(sqrt(complex(3.0L))), PI / 3)); 1123 assert(isClose(atan(sqrt(complex(3.0f))), float(PI) / 3)); 1124 } 1125 1126 /** 1127 Hyperbolic trigonometric functions on complex numbers. 1128 1129 Params: z = A complex number. 1130 Returns: The hyperbolic sine, cosine and tangent of `z`, respectively. 1131 */ 1132 Complex!T sinh(T)(Complex!T z) @safe pure nothrow @nogc 1133 { 1134 static import core.math, std.math; 1135 return Complex!T(std.math.sinh(z.re) * core.math.cos(z.im), 1136 std.math.cosh(z.re) * core.math.sin(z.im)); 1137 } 1138 1139 /// 1140 @safe pure nothrow unittest 1141 { 1142 static import std.math; 1143 assert(sinh(complex(0.0)) == 0.0); 1144 assert(sinh(complex(1.0L)) == std.math.sinh(1.0L)); 1145 assert(sinh(complex(1.0f)) == std.math.sinh(1.0f)); 1146 } 1147 1148 /// ditto 1149 Complex!T cosh(T)(Complex!T z) @safe pure nothrow @nogc 1150 { 1151 static import core.math, std.math; 1152 return Complex!T(std.math.cosh(z.re) * core.math.cos(z.im), 1153 std.math.sinh(z.re) * core.math.sin(z.im)); 1154 } 1155 1156 /// 1157 @safe pure nothrow unittest 1158 { 1159 static import std.math; 1160 assert(cosh(complex(0.0)) == 1.0); 1161 assert(cosh(complex(1.0L)) == std.math.cosh(1.0L)); 1162 assert(cosh(complex(1.0f)) == std.math.cosh(1.0f)); 1163 } 1164 1165 /// ditto 1166 Complex!T tanh(T)(Complex!T z) @safe pure nothrow @nogc 1167 { 1168 return sinh(z) / cosh(z); 1169 } 1170 1171 /// 1172 @safe pure nothrow @nogc unittest 1173 { 1174 import std.math.operations : isClose; 1175 import std.math.trigonometry : std_math_tanh = tanh; 1176 assert(tanh(complex(0.0)) == 0.0); 1177 assert(isClose(tanh(complex(1.0L)), std_math_tanh(1.0L))); 1178 assert(isClose(tanh(complex(1.0f)), std_math_tanh(1.0f))); 1179 } 1180 1181 /** 1182 Inverse hyperbolic trigonometric functions on complex numbers. 1183 1184 Params: z = A complex number. 1185 Returns: The hyperbolic arcsine, arccosine and arctangent of `z`, respectively. 1186 */ 1187 Complex!T asinh(T)(Complex!T z) @safe pure nothrow @nogc 1188 { 1189 auto t = Complex!T((z.re - z.im) * (z.re + z.im) + 1, 2 * z.re * z.im); 1190 return log(sqrt(t) + z); 1191 } 1192 1193 /// 1194 @safe pure nothrow unittest 1195 { 1196 import std.math.operations : isClose; 1197 import std.math.trigonometry : std_math_asinh = asinh; 1198 assert(asinh(complex(0.0)) == 0.0); 1199 assert(isClose(asinh(complex(1.0L)), std_math_asinh(1.0L))); 1200 assert(isClose(asinh(complex(1.0f)), std_math_asinh(1.0f))); 1201 } 1202 1203 /// ditto 1204 Complex!T acosh(T)(Complex!T z) @safe pure nothrow @nogc 1205 { 1206 return 2 * log(sqrt(T(0.5) * (z + 1)) + sqrt(T(0.5) * (z - 1))); 1207 } 1208 1209 /// 1210 @safe pure nothrow unittest 1211 { 1212 import std.math.operations : isClose; 1213 import std.math.trigonometry : std_math_acosh = acosh; 1214 assert(acosh(complex(1.0)) == 0.0); 1215 assert(isClose(acosh(complex(3.0L)), std_math_acosh(3.0L))); 1216 assert(isClose(acosh(complex(3.0f)), std_math_acosh(3.0f))); 1217 } 1218 1219 /// ditto 1220 Complex!T atanh(T)(Complex!T z) @safe pure nothrow @nogc 1221 { 1222 static import std.math; 1223 const T im2 = z.im * z.im; 1224 const T x = 1 - im2 - z.re * z.re; 1225 1226 T num = 1 + z.re; 1227 T den = 1 - z.re; 1228 1229 num = im2 + num * num; 1230 den = im2 + den * den; 1231 1232 return Complex!T(T(0.25) * (std.math.log(num) - std.math.log(den)), 1233 T(0.5) * std.math.atan2(2 * z.im, x)); 1234 } 1235 1236 /// 1237 @safe pure nothrow @nogc unittest 1238 { 1239 import std.math.operations : isClose; 1240 import std.math.trigonometry : std_math_atanh = atanh; 1241 assert(atanh(complex(0.0)) == 0.0); 1242 assert(isClose(atanh(complex(0.5L)), std_math_atanh(0.5L))); 1243 assert(isClose(atanh(complex(0.5f)), std_math_atanh(0.5f))); 1244 } 1245 1246 /** 1247 Params: y = A real number. 1248 Returns: The value of cos(y) + i sin(y). 1249 1250 Note: 1251 `expi` is included here for convenience and for easy migration of code. 1252 */ 1253 Complex!real expi(real y) @trusted pure nothrow @nogc 1254 { 1255 import core.math : cos, sin; 1256 version (none) // LDC: this is the old asm version from std.math.expi - re-enable? 1257 { 1258 static if (real.mant_dig == 64) // x87 1259 { 1260 if (!__ctfe) 1261 { 1262 Complex!real r = void; 1263 asm @trusted pure nothrow @nogc 1264 { 1265 "fsincos" : "=st" (r.re), "=st(1)" (r.im) : "st" (y) : "flags"; 1266 } 1267 return r; 1268 } 1269 } 1270 } 1271 return Complex!real(cos(y), sin(y)); 1272 } 1273 1274 /// 1275 @safe pure nothrow unittest 1276 { 1277 import core.math : cos, sin; 1278 assert(expi(0.0L) == 1.0L); 1279 assert(expi(1.3e5L) == complex(cos(1.3e5L), sin(1.3e5L))); 1280 } 1281 1282 /** 1283 Params: y = A real number. 1284 Returns: The value of cosh(y) + i sinh(y) 1285 1286 Note: 1287 `coshisinh` is included here for convenience and for easy migration of code. 1288 */ 1289 Complex!real coshisinh(real y) @safe pure nothrow @nogc 1290 { 1291 static import core.math; 1292 static import std.math; 1293 if (core.math.fabs(y) <= 0.5) 1294 return Complex!real(std.math.cosh(y), std.math.sinh(y)); 1295 else 1296 { 1297 auto z = std.math.exp(y); 1298 auto zi = 0.5 / z; 1299 z = 0.5 * z; 1300 return Complex!real(z + zi, z - zi); 1301 } 1302 } 1303 1304 /// 1305 @safe pure nothrow @nogc unittest 1306 { 1307 import std.math.trigonometry : cosh, sinh; 1308 assert(coshisinh(3.0L) == complex(cosh(3.0L), sinh(3.0L))); 1309 } 1310 1311 /** 1312 Params: z = A complex number. 1313 Returns: The square root of `z`. 1314 */ 1315 Complex!T sqrt(T)(Complex!T z) @safe pure nothrow @nogc 1316 { 1317 static import core.math; 1318 typeof(return) c; 1319 real x,y,w,r; 1320 1321 if (z == 0) 1322 { 1323 c = typeof(return)(0, 0); 1324 } 1325 else 1326 { 1327 real z_re = z.re; 1328 real z_im = z.im; 1329 1330 x = core.math.fabs(z_re); 1331 y = core.math.fabs(z_im); 1332 if (x >= y) 1333 { 1334 r = y / x; 1335 w = core.math.sqrt(x) 1336 * core.math.sqrt(0.5 * (1 + core.math.sqrt(1 + r * r))); 1337 } 1338 else 1339 { 1340 r = x / y; 1341 w = core.math.sqrt(y) 1342 * core.math.sqrt(0.5 * (r + core.math.sqrt(1 + r * r))); 1343 } 1344 1345 if (z_re >= 0) 1346 { 1347 c = typeof(return)(w, z_im / (w + w)); 1348 } 1349 else 1350 { 1351 if (z_im < 0) 1352 w = -w; 1353 c = typeof(return)(z_im / (w + w), w); 1354 } 1355 } 1356 return c; 1357 } 1358 1359 /// 1360 @safe pure nothrow unittest 1361 { 1362 static import core.math; 1363 assert(sqrt(complex(0.0)) == 0.0); 1364 assert(sqrt(complex(1.0L, 0)) == core.math.sqrt(1.0L)); 1365 assert(sqrt(complex(-1.0L, 0)) == complex(0, 1.0L)); 1366 assert(sqrt(complex(-8.0, -6.0)) == complex(1.0, -3.0)); 1367 } 1368 1369 @safe pure nothrow unittest 1370 { 1371 import std.math.operations : isClose; 1372 1373 auto c1 = complex(1.0, 1.0); 1374 auto c2 = Complex!double(0.5, 2.0); 1375 1376 auto c1s = sqrt(c1); 1377 assert(isClose(c1s.re, 1.09868411347)); 1378 assert(isClose(c1s.im, 0.455089860562)); 1379 1380 auto c2s = sqrt(c2); 1381 assert(isClose(c2s.re, 1.13171392428)); 1382 assert(isClose(c2s.im, 0.883615530876)); 1383 } 1384 1385 // support %f formatting of complex numbers 1386 // https://issues.dlang.org/show_bug.cgi?id=10881 1387 @safe unittest 1388 { 1389 import std.format : format; 1390 1391 auto x = complex(1.2, 3.4); 1392 assert(format("%.2f", x) == "1.20+3.40i"); 1393 1394 auto y = complex(1.2, -3.4); 1395 assert(format("%.2f", y) == "1.20-3.40i"); 1396 } 1397 1398 @safe unittest 1399 { 1400 // Test wide string formatting 1401 import std.format.write : formattedWrite; 1402 wstring wformat(T)(string format, Complex!T c) 1403 { 1404 import std.array : appender; 1405 auto w = appender!wstring(); 1406 auto n = formattedWrite(w, format, c); 1407 return w.data; 1408 } 1409 1410 auto x = complex(1.2, 3.4); 1411 assert(wformat("%.2f", x) == "1.20+3.40i"w); 1412 } 1413 1414 @safe unittest 1415 { 1416 // Test ease of use (vanilla toString() should be supported) 1417 assert(complex(1.2, 3.4).toString() == "1.2+3.4i"); 1418 } 1419 1420 @safe pure nothrow @nogc unittest 1421 { 1422 auto c = complex(3.0L, 4.0L); 1423 c = sqrt(c); 1424 assert(c.re == 2.0L); 1425 assert(c.im == 1.0L); 1426 } 1427 1428 /** 1429 * Calculates e$(SUPERSCRIPT x). 1430 * Params: 1431 * x = A complex number 1432 * Returns: 1433 * The complex base e exponential of `x` 1434 * 1435 * $(TABLE_SV 1436 * $(TR $(TH x) $(TH exp(x))) 1437 * $(TR $(TD ($(PLUSMN)0, +0)) $(TD (1, +0))) 1438 * $(TR $(TD (any, +$(INFIN))) $(TD ($(NAN), $(NAN)))) 1439 * $(TR $(TD (any, $(NAN)) $(TD ($(NAN), $(NAN))))) 1440 * $(TR $(TD (+$(INFIN), +0)) $(TD (+$(INFIN), +0))) 1441 * $(TR $(TD (-$(INFIN), any)) $(TD ($(PLUSMN)0, cis(x.im)))) 1442 * $(TR $(TD (+$(INFIN), any)) $(TD ($(PLUSMN)$(INFIN), cis(x.im)))) 1443 * $(TR $(TD (-$(INFIN), +$(INFIN))) $(TD ($(PLUSMN)0, $(PLUSMN)0))) 1444 * $(TR $(TD (+$(INFIN), +$(INFIN))) $(TD ($(PLUSMN)$(INFIN), $(NAN)))) 1445 * $(TR $(TD (-$(INFIN), $(NAN))) $(TD ($(PLUSMN)0, $(PLUSMN)0))) 1446 * $(TR $(TD (+$(INFIN), $(NAN))) $(TD ($(PLUSMN)$(INFIN), $(NAN)))) 1447 * $(TR $(TD ($(NAN), +0)) $(TD ($(NAN), +0))) 1448 * $(TR $(TD ($(NAN), any)) $(TD ($(NAN), $(NAN)))) 1449 * $(TR $(TD ($(NAN), $(NAN))) $(TD ($(NAN), $(NAN)))) 1450 * ) 1451 */ 1452 Complex!T exp(T)(Complex!T x) @trusted pure nothrow @nogc // TODO: @safe 1453 { 1454 static import std.math; 1455 1456 // Handle special cases explicitly here, as fromPolar will otherwise 1457 // cause them to return Complex!T(NaN, NaN), or with the wrong sign. 1458 if (std.math.isInfinity(x.re)) 1459 { 1460 if (std.math.isNaN(x.im)) 1461 { 1462 if (std.math.signbit(x.re)) 1463 return Complex!T(0, std.math.copysign(0, x.im)); 1464 else 1465 return x; 1466 } 1467 if (std.math.isInfinity(x.im)) 1468 { 1469 if (std.math.signbit(x.re)) 1470 return Complex!T(0, std.math.copysign(0, x.im)); 1471 else 1472 return Complex!T(T.infinity, -T.nan); 1473 } 1474 if (x.im == 0.0) 1475 { 1476 if (std.math.signbit(x.re)) 1477 return Complex!T(0.0); 1478 else 1479 return Complex!T(T.infinity); 1480 } 1481 } 1482 if (std.math.isNaN(x.re)) 1483 { 1484 if (std.math.isNaN(x.im) || std.math.isInfinity(x.im)) 1485 return Complex!T(T.nan, T.nan); 1486 if (x.im == 0.0) 1487 return x; 1488 } 1489 if (x.re == 0.0) 1490 { 1491 if (std.math.isNaN(x.im) || std.math.isInfinity(x.im)) 1492 return Complex!T(T.nan, T.nan); 1493 if (x.im == 0.0) 1494 return Complex!T(1.0, 0.0); 1495 } 1496 1497 return fromPolar!(T, T)(std.math.exp(x.re), x.im); 1498 } 1499 1500 /// 1501 @safe pure nothrow @nogc unittest 1502 { 1503 import std.math.operations : isClose; 1504 import std.math.constants : PI; 1505 1506 assert(exp(complex(0.0, 0.0)) == complex(1.0, 0.0)); 1507 1508 auto a = complex(2.0, 1.0); 1509 assert(exp(conj(a)) == conj(exp(a))); 1510 1511 auto b = exp(complex(0.0L, 1.0L) * PI); 1512 assert(isClose(b, -1.0L, 0.0, 1e-15)); 1513 } 1514 1515 @safe pure nothrow @nogc unittest 1516 { 1517 import std.math.traits : isNaN, isInfinity; 1518 1519 auto a = exp(complex(0.0, double.infinity)); 1520 assert(a.re.isNaN && a.im.isNaN); 1521 auto b = exp(complex(0.0, double.infinity)); 1522 assert(b.re.isNaN && b.im.isNaN); 1523 auto c = exp(complex(0.0, double.nan)); 1524 assert(c.re.isNaN && c.im.isNaN); 1525 1526 auto d = exp(complex(+double.infinity, 0.0)); 1527 assert(d == complex(double.infinity, 0.0)); 1528 auto e = exp(complex(-double.infinity, 0.0)); 1529 assert(e == complex(0.0)); 1530 auto f = exp(complex(-double.infinity, 1.0)); 1531 assert(f == complex(0.0)); 1532 auto g = exp(complex(+double.infinity, 1.0)); 1533 assert(g == complex(double.infinity, double.infinity)); 1534 auto h = exp(complex(-double.infinity, +double.infinity)); 1535 assert(h == complex(0.0)); 1536 auto i = exp(complex(+double.infinity, +double.infinity)); 1537 assert(i.re.isInfinity && i.im.isNaN); 1538 auto j = exp(complex(-double.infinity, double.nan)); 1539 assert(j == complex(0.0)); 1540 auto k = exp(complex(+double.infinity, double.nan)); 1541 assert(k.re.isInfinity && k.im.isNaN); 1542 1543 auto l = exp(complex(double.nan, 0)); 1544 assert(l.re.isNaN && l.im == 0.0); 1545 auto m = exp(complex(double.nan, 1)); 1546 assert(m.re.isNaN && m.im.isNaN); 1547 auto n = exp(complex(double.nan, double.nan)); 1548 assert(n.re.isNaN && n.im.isNaN); 1549 } 1550 1551 @safe pure nothrow @nogc unittest 1552 { 1553 import std.math.constants : PI; 1554 import std.math.operations : isClose; 1555 1556 auto a = exp(complex(0.0, -PI)); 1557 assert(isClose(a, -1.0, 0.0, 1e-15)); 1558 1559 auto b = exp(complex(0.0, -2.0 * PI / 3.0)); 1560 assert(isClose(b, complex(-0.5L, -0.866025403784438646763L))); 1561 1562 auto c = exp(complex(0.0, PI / 3.0)); 1563 assert(isClose(c, complex(0.5L, 0.866025403784438646763L))); 1564 1565 auto d = exp(complex(0.0, 2.0 * PI / 3.0)); 1566 assert(isClose(d, complex(-0.5L, 0.866025403784438646763L))); 1567 1568 auto e = exp(complex(0.0, PI)); 1569 assert(isClose(e, -1.0, 0.0, 1e-15)); 1570 } 1571 1572 /** 1573 * Calculate the natural logarithm of x. 1574 * The branch cut is along the negative axis. 1575 * Params: 1576 * x = A complex number 1577 * Returns: 1578 * The complex natural logarithm of `x` 1579 * 1580 * $(TABLE_SV 1581 * $(TR $(TH x) $(TH log(x))) 1582 * $(TR $(TD (-0, +0)) $(TD (-$(INFIN), $(PI)))) 1583 * $(TR $(TD (+0, +0)) $(TD (-$(INFIN), +0))) 1584 * $(TR $(TD (any, +$(INFIN))) $(TD (+$(INFIN), $(PI)/2))) 1585 * $(TR $(TD (any, $(NAN))) $(TD ($(NAN), $(NAN)))) 1586 * $(TR $(TD (-$(INFIN), any)) $(TD (+$(INFIN), $(PI)))) 1587 * $(TR $(TD (+$(INFIN), any)) $(TD (+$(INFIN), +0))) 1588 * $(TR $(TD (-$(INFIN), +$(INFIN))) $(TD (+$(INFIN), 3$(PI)/4))) 1589 * $(TR $(TD (+$(INFIN), +$(INFIN))) $(TD (+$(INFIN), $(PI)/4))) 1590 * $(TR $(TD ($(PLUSMN)$(INFIN), $(NAN))) $(TD (+$(INFIN), $(NAN)))) 1591 * $(TR $(TD ($(NAN), any)) $(TD ($(NAN), $(NAN)))) 1592 * $(TR $(TD ($(NAN), +$(INFIN))) $(TD (+$(INFIN), $(NAN)))) 1593 * $(TR $(TD ($(NAN), $(NAN))) $(TD ($(NAN), $(NAN)))) 1594 * ) 1595 */ 1596 Complex!T log(T)(Complex!T x) @safe pure nothrow @nogc 1597 { 1598 static import std.math; 1599 1600 // Handle special cases explicitly here for better accuracy. 1601 // The order here is important, so that the correct path is chosen. 1602 if (std.math.isNaN(x.re)) 1603 { 1604 if (std.math.isInfinity(x.im)) 1605 return Complex!T(T.infinity, T.nan); 1606 else 1607 return Complex!T(T.nan, T.nan); 1608 } 1609 if (std.math.isInfinity(x.re)) 1610 { 1611 if (std.math.isNaN(x.im)) 1612 return Complex!T(T.infinity, T.nan); 1613 else if (std.math.isInfinity(x.im)) 1614 { 1615 if (std.math.signbit(x.re)) 1616 return Complex!T(T.infinity, std.math.copysign(3.0 * std.math.PI_4, x.im)); 1617 else 1618 return Complex!T(T.infinity, std.math.copysign(std.math.PI_4, x.im)); 1619 } 1620 else 1621 { 1622 if (std.math.signbit(x.re)) 1623 return Complex!T(T.infinity, std.math.copysign(std.math.PI, x.im)); 1624 else 1625 return Complex!T(T.infinity, std.math.copysign(0.0, x.im)); 1626 } 1627 } 1628 if (std.math.isNaN(x.im)) 1629 return Complex!T(T.nan, T.nan); 1630 if (std.math.isInfinity(x.im)) 1631 return Complex!T(T.infinity, std.math.copysign(std.math.PI_2, x.im)); 1632 if (x.re == 0.0 && x.im == 0.0) 1633 { 1634 if (std.math.signbit(x.re)) 1635 return Complex!T(-T.infinity, std.math.copysign(std.math.PI, x.im)); 1636 else 1637 return Complex!T(-T.infinity, std.math.copysign(0.0, x.im)); 1638 } 1639 1640 return Complex!T(std.math.log(abs(x)), arg(x)); 1641 } 1642 1643 /// 1644 @safe pure nothrow @nogc unittest 1645 { 1646 import core.math : sqrt; 1647 import std.math.constants : PI; 1648 import std.math.operations : isClose; 1649 1650 auto a = complex(2.0, 1.0); 1651 assert(log(conj(a)) == conj(log(a))); 1652 1653 auto b = 2.0 * log10(complex(0.0, 1.0)); 1654 auto c = 4.0 * log10(complex(sqrt(2.0) / 2, sqrt(2.0) / 2)); 1655 assert(isClose(b, c, 0.0, 1e-15)); 1656 1657 assert(log(complex(-1.0L, 0.0L)) == complex(0.0L, PI)); 1658 assert(log(complex(-1.0L, -0.0L)) == complex(0.0L, -PI)); 1659 } 1660 1661 @safe pure nothrow @nogc unittest 1662 { 1663 import std.math.traits : isNaN, isInfinity; 1664 import std.math.constants : PI, PI_2, PI_4; 1665 1666 auto a = log(complex(-0.0L, 0.0L)); 1667 assert(a == complex(-real.infinity, PI)); 1668 auto b = log(complex(0.0L, 0.0L)); 1669 assert(b == complex(-real.infinity, +0.0L)); 1670 auto c = log(complex(1.0L, real.infinity)); 1671 assert(c == complex(real.infinity, PI_2)); 1672 auto d = log(complex(1.0L, real.nan)); 1673 assert(d.re.isNaN && d.im.isNaN); 1674 1675 auto e = log(complex(-real.infinity, 1.0L)); 1676 assert(e == complex(real.infinity, PI)); 1677 auto f = log(complex(real.infinity, 1.0L)); 1678 assert(f == complex(real.infinity, 0.0L)); 1679 auto g = log(complex(-real.infinity, real.infinity)); 1680 assert(g == complex(real.infinity, 3.0 * PI_4)); 1681 auto h = log(complex(real.infinity, real.infinity)); 1682 assert(h == complex(real.infinity, PI_4)); 1683 auto i = log(complex(real.infinity, real.nan)); 1684 assert(i.re.isInfinity && i.im.isNaN); 1685 1686 auto j = log(complex(real.nan, 1.0L)); 1687 assert(j.re.isNaN && j.im.isNaN); 1688 auto k = log(complex(real.nan, real.infinity)); 1689 assert(k.re.isInfinity && k.im.isNaN); 1690 auto l = log(complex(real.nan, real.nan)); 1691 assert(l.re.isNaN && l.im.isNaN); 1692 } 1693 1694 @safe pure nothrow @nogc unittest 1695 { 1696 import std.math.constants : PI; 1697 import std.math.operations : isClose; 1698 1699 auto a = log(fromPolar(1.0, PI / 6.0)); 1700 assert(isClose(a, complex(0.0L, 0.523598775598298873077L), 0.0, 1e-15)); 1701 1702 auto b = log(fromPolar(1.0, PI / 3.0)); 1703 assert(isClose(b, complex(0.0L, 1.04719755119659774615L), 0.0, 1e-15)); 1704 1705 auto c = log(fromPolar(1.0, PI / 2.0)); 1706 assert(isClose(c, complex(0.0L, 1.57079632679489661923L), 0.0, 1e-15)); 1707 1708 auto d = log(fromPolar(1.0, 2.0 * PI / 3.0)); 1709 assert(isClose(d, complex(0.0L, 2.09439510239319549230L), 0.0, 1e-15)); 1710 1711 auto e = log(fromPolar(1.0, 5.0 * PI / 6.0)); 1712 assert(isClose(e, complex(0.0L, 2.61799387799149436538L), 0.0, 1e-15)); 1713 1714 auto f = log(complex(-1.0L, 0.0L)); 1715 assert(isClose(f, complex(0.0L, PI), 0.0, 1e-15)); 1716 } 1717 1718 /** 1719 * Calculate the base-10 logarithm of x. 1720 * Params: 1721 * x = A complex number 1722 * Returns: 1723 * The complex base 10 logarithm of `x` 1724 */ 1725 Complex!T log10(T)(Complex!T x) @safe pure nothrow @nogc 1726 { 1727 import std.math.constants : LN10; 1728 1729 return log(x) / Complex!T(LN10); 1730 } 1731 1732 /// 1733 @safe pure nothrow @nogc unittest 1734 { 1735 import core.math : sqrt; 1736 import std.math.constants : LN10, PI; 1737 import std.math.operations : isClose; 1738 1739 auto a = complex(2.0, 1.0); 1740 assert(log10(a) == log(a) / log(complex(10.0))); 1741 1742 auto b = log10(complex(0.0, 1.0)) * 2.0; 1743 auto c = log10(complex(sqrt(2.0) / 2, sqrt(2.0) / 2)) * 4.0; 1744 assert(isClose(b, c, 0.0, 1e-15)); 1745 } 1746 1747 @safe pure nothrow @nogc unittest 1748 { 1749 import std.math.constants : LN10, PI; 1750 import std.math.operations : isClose; 1751 1752 auto a = log10(fromPolar(1.0, PI / 6.0)); 1753 assert(isClose(a, complex(0.0L, 0.227396058973640224580L), 0.0, 1e-15)); 1754 1755 auto b = log10(fromPolar(1.0, PI / 3.0)); 1756 assert(isClose(b, complex(0.0L, 0.454792117947280449161L), 0.0, 1e-15)); 1757 1758 auto c = log10(fromPolar(1.0, PI / 2.0)); 1759 assert(isClose(c, complex(0.0L, 0.682188176920920673742L), 0.0, 1e-15)); 1760 1761 auto d = log10(fromPolar(1.0, 2.0 * PI / 3.0)); 1762 assert(isClose(d, complex(0.0L, 0.909584235894560898323L), 0.0, 1e-15)); 1763 1764 auto e = log10(fromPolar(1.0, 5.0 * PI / 6.0)); 1765 assert(isClose(e, complex(0.0L, 1.13698029486820112290L), 0.0, 1e-15)); 1766 1767 auto f = log10(complex(-1.0L, 0.0L)); 1768 assert(isClose(f, complex(0.0L, 1.36437635384184134748L), 0.0, 1e-15)); 1769 1770 assert(ceqrel(log10(complex(-100.0L, 0.0L)), complex(2.0L, PI / LN10)) >= real.mant_dig - 1); 1771 assert(ceqrel(log10(complex(-100.0L, -0.0L)), complex(2.0L, -PI / LN10)) >= real.mant_dig - 1); 1772 } 1773 1774 /** 1775 * Calculates x$(SUPERSCRIPT n). 1776 * The branch cut is on the negative axis. 1777 * Params: 1778 * x = base 1779 * n = exponent 1780 * Returns: 1781 * `x` raised to the power of `n` 1782 */ 1783 Complex!T pow(T, Int)(Complex!T x, const Int n) @safe pure nothrow @nogc 1784 if (isIntegral!Int) 1785 { 1786 alias UInt = Unsigned!(Unqual!Int); 1787 1788 UInt m = (n < 0) ? -cast(UInt) n : n; 1789 Complex!T y = (m % 2) ? x : Complex!T(1); 1790 1791 while (m >>= 1) 1792 { 1793 x *= x; 1794 if (m % 2) 1795 y *= x; 1796 } 1797 1798 return (n < 0) ? Complex!T(1) / y : y; 1799 } 1800 1801 /// 1802 @safe pure nothrow @nogc unittest 1803 { 1804 import std.math.operations : isClose; 1805 1806 auto a = complex(1.0, 2.0); 1807 assert(pow(a, 2) == a * a); 1808 assert(pow(a, 3) == a * a * a); 1809 assert(pow(a, -2) == 1.0 / (a * a)); 1810 assert(isClose(pow(a, -3), 1.0 / (a * a * a))); 1811 } 1812 1813 /// ditto 1814 Complex!T pow(T)(Complex!T x, const T n) @trusted pure nothrow @nogc 1815 { 1816 static import std.math; 1817 1818 if (x == 0.0) 1819 return Complex!T(0.0); 1820 1821 if (x.im == 0 && x.re > 0.0) 1822 return Complex!T(std.math.pow(x.re, n)); 1823 1824 Complex!T t = log(x); 1825 return fromPolar!(T, T)(std.math.exp(n * t.re), n * t.im); 1826 } 1827 1828 /// 1829 @safe pure nothrow @nogc unittest 1830 { 1831 import std.math.operations : isClose; 1832 assert(pow(complex(0.0), 2.0) == complex(0.0)); 1833 assert(pow(complex(5.0), 2.0) == complex(25.0)); 1834 1835 auto a = pow(complex(-1.0, 0.0), 0.5); 1836 assert(isClose(a, complex(0.0, +1.0), 0.0, 1e-16)); 1837 1838 auto b = pow(complex(-1.0, -0.0), 0.5); 1839 assert(isClose(b, complex(0.0, -1.0), 0.0, 1e-16)); 1840 } 1841 1842 /// ditto 1843 Complex!T pow(T)(Complex!T x, Complex!T y) @trusted pure nothrow @nogc 1844 { 1845 return (x == 0) ? Complex!T(0) : exp(y * log(x)); 1846 } 1847 1848 /// 1849 @safe pure nothrow @nogc unittest 1850 { 1851 import std.math.operations : isClose; 1852 import std.math.exponential : exp; 1853 import std.math.constants : PI; 1854 auto a = complex(0.0); 1855 auto b = complex(2.0); 1856 assert(pow(a, b) == complex(0.0)); 1857 1858 auto c = complex(0.0L, 1.0L); 1859 assert(isClose(pow(c, c), exp((-PI) / 2))); 1860 } 1861 1862 /// ditto 1863 Complex!T pow(T)(const T x, Complex!T n) @trusted pure nothrow @nogc 1864 { 1865 static import std.math; 1866 1867 return (x > 0.0) 1868 ? fromPolar!(T, T)(std.math.pow(x, n.re), n.im * std.math.log(x)) 1869 : pow(Complex!T(x), n); 1870 } 1871 1872 /// 1873 @safe pure nothrow @nogc unittest 1874 { 1875 import std.math.operations : isClose; 1876 assert(pow(2.0, complex(0.0)) == complex(1.0)); 1877 assert(pow(2.0, complex(5.0)) == complex(32.0)); 1878 1879 auto a = pow(-2.0, complex(-1.0)); 1880 assert(isClose(a, complex(-0.5), 0.0, 1e-16)); 1881 1882 auto b = pow(-0.5, complex(-1.0)); 1883 assert(isClose(b, complex(-2.0), 0.0, 1e-15)); 1884 } 1885 1886 @safe pure nothrow @nogc unittest 1887 { 1888 import std.math.constants : PI; 1889 import std.math.operations : isClose; 1890 1891 auto a = pow(complex(3.0, 4.0), 2); 1892 assert(isClose(a, complex(-7.0, 24.0))); 1893 1894 auto b = pow(complex(3.0, 4.0), PI); 1895 assert(ceqrel(b, complex(-152.91512205297134, 35.547499631917738)) >= double.mant_dig - 3); 1896 1897 auto c = pow(complex(3.0, 4.0), complex(-2.0, 1.0)); 1898 assert(ceqrel(c, complex(0.015351734187477306, -0.0038407695456661503)) >= double.mant_dig - 3); 1899 1900 auto d = pow(PI, complex(2.0, -1.0)); 1901 assert(ceqrel(d, complex(4.0790296880118296, -8.9872469554541869)) >= double.mant_dig - 1); 1902 1903 auto e = complex(2.0); 1904 assert(ceqrel(pow(e, 3), exp(3 * log(e))) >= double.mant_dig - 1); 1905 } 1906 1907 @safe pure nothrow @nogc unittest 1908 { 1909 import std.meta : AliasSeq; 1910 import std.math : RealFormat, floatTraits; 1911 static foreach (T; AliasSeq!(float, double, real)) 1912 {{ 1913 static if (floatTraits!T.realFormat == RealFormat.ibmExtended) 1914 { 1915 /* For IBM real, epsilon is too small (since 1.0 plus any double is 1916 representable) to be able to expect results within epsilon * 100. */ 1917 } 1918 else 1919 { 1920 T eps = T.epsilon * 100; 1921 1922 T a = -1.0; 1923 T b = 0.5; 1924 Complex!T ref1 = pow(complex(a), complex(b)); 1925 Complex!T res1 = pow(a, complex(b)); 1926 Complex!T res2 = pow(complex(a), b); 1927 assert(abs(ref1 - res1) < eps); 1928 assert(abs(ref1 - res2) < eps); 1929 assert(abs(res1 - res2) < eps); 1930 1931 T c = -3.2; 1932 T d = 1.4; 1933 Complex!T ref2 = pow(complex(a), complex(b)); 1934 Complex!T res3 = pow(a, complex(b)); 1935 Complex!T res4 = pow(complex(a), b); 1936 assert(abs(ref2 - res3) < eps); 1937 assert(abs(ref2 - res4) < eps); 1938 assert(abs(res3 - res4) < eps); 1939 } 1940 }} 1941 } 1942 1943 @safe pure nothrow @nogc unittest 1944 { 1945 import std.meta : AliasSeq; 1946 static foreach (T; AliasSeq!(float, double, real)) 1947 {{ 1948 auto c = Complex!T(123, 456); 1949 auto n = c.toNative(); 1950 assert(c.re == n.re && c.im == n.im); 1951 }} 1952 }