1 /** 2 * This module provides an interface to the garbage collector used by 3 * applications written in the D programming language. It allows the 4 * garbage collector in the runtime to be swapped without affecting 5 * binary compatibility of applications. 6 * 7 * Using this module is not necessary in typical D code. It is mostly 8 * useful when doing low-level _memory management. 9 * 10 * Notes_to_users: 11 * 12 $(OL 13 $(LI The GC is a conservative mark-and-sweep collector. It only runs a 14 collection cycle when an allocation is requested of it, never 15 otherwise. Hence, if the program is not doing allocations, 16 there will be no GC collection pauses. The pauses occur because 17 all threads the GC knows about are halted so the threads' stacks 18 and registers can be scanned for references to GC allocated data. 19 ) 20 21 $(LI The GC does not know about threads that were created by directly calling 22 the OS/C runtime thread creation APIs and D threads that were detached 23 from the D runtime after creation. 24 Such threads will not be paused for a GC collection, and the GC might not detect 25 references to GC allocated data held by them. This can cause memory corruption. 26 There are several ways to resolve this issue: 27 $(OL 28 $(LI Do not hold references to GC allocated data in such threads.) 29 $(LI Register/unregister such data with calls to $(LREF addRoot)/$(LREF removeRoot) and 30 $(LREF addRange)/$(LREF removeRange).) 31 $(LI Maintain another reference to that same data in another thread that the 32 GC does know about.) 33 $(LI Disable GC collection cycles while that thread is active with $(LREF disable)/$(LREF enable).) 34 $(LI Register the thread with the GC using $(REF thread_attachThis, core,thread,osthread)/$(REF thread_detachThis, core,thread,threadbase).) 35 ) 36 ) 37 ) 38 * 39 * Notes_to_implementors: 40 * $(UL 41 * $(LI On POSIX systems, the signals `SIGRTMIN` and `SIGRTMIN + 1` are reserved 42 * by this module for use in the garbage collector implementation. 43 * Typically, they will be used to stop and resume other threads 44 * when performing a collection, but an implementation may choose 45 * not to use this mechanism (or not stop the world at all, in the 46 * case of concurrent garbage collectors).) 47 * 48 * $(LI Registers, the stack, and any other _memory locations added through 49 * the $(D GC.$(LREF addRange)) function are always scanned conservatively. 50 * This means that even if a variable is e.g. of type $(D float), 51 * it will still be scanned for possible GC pointers. And, if the 52 * word-interpreted representation of the variable matches a GC-managed 53 * _memory block's address, that _memory block is considered live.) 54 * 55 * $(LI Implementations are free to scan the non-root heap in a precise 56 * manner, so that fields of types like $(D float) will not be considered 57 * relevant when scanning the heap. Thus, casting a GC pointer to an 58 * integral type (e.g. $(D size_t)) and storing it in a field of that 59 * type inside the GC heap may mean that it will not be recognized 60 * if the _memory block was allocated with precise type info or with 61 * the $(D GC.BlkAttr.$(LREF NO_SCAN)) attribute.) 62 * 63 * $(LI Destructors will always be executed while other threads are 64 * active; that is, an implementation that stops the world must not 65 * execute destructors until the world has been resumed.) 66 * 67 * $(LI A destructor of an object must not access object references 68 * within the object. This means that an implementation is free to 69 * optimize based on this rule.) 70 * 71 * $(LI An implementation is free to perform heap compaction and copying 72 * so long as no valid GC pointers are invalidated in the process. 73 * However, _memory allocated with $(D GC.BlkAttr.$(LREF NO_MOVE)) must 74 * not be moved/copied.) 75 * 76 * $(LI Implementations must support interior pointers. That is, if the 77 * only reference to a GC-managed _memory block points into the 78 * middle of the block rather than the beginning (for example), the 79 * GC must consider the _memory block live. The exception to this 80 * rule is when a _memory block is allocated with the 81 * $(D GC.BlkAttr.$(LREF NO_INTERIOR)) attribute; it is the user's 82 * responsibility to make sure such _memory blocks have a proper pointer 83 * to them when they should be considered live.) 84 * 85 * $(LI It is acceptable for an implementation to store bit flags into 86 * pointer values and GC-managed _memory blocks, so long as such a 87 * trick is not visible to the application. In practice, this means 88 * that only a stop-the-world collector can do this.) 89 * 90 * $(LI Implementations are free to assume that GC pointers are only 91 * stored on word boundaries. Unaligned pointers may be ignored 92 * entirely.) 93 * 94 * $(LI Implementations are free to run collections at any point. It is, 95 * however, recommendable to only do so when an allocation attempt 96 * happens and there is insufficient _memory available.) 97 * ) 98 * 99 * Copyright: Copyright Sean Kelly 2005 - 2015. 100 * License: $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost License 1.0) 101 * Authors: Sean Kelly, Alex Rønne Petersen 102 * Source: $(DRUNTIMESRC core/_memory.d) 103 */ 104 105 module core.memory; 106 107 version (ARM) 108 version = AnyARM; 109 else version (AArch64) 110 version = AnyARM; 111 112 version (iOS) 113 version = iOSDerived; 114 else version (TVOS) 115 version = iOSDerived; 116 else version (WatchOS) 117 version = iOSDerived; 118 119 private 120 { 121 extern (C) uint gc_getAttr( void* p ) pure nothrow; 122 extern (C) uint gc_setAttr( void* p, uint a ) pure nothrow; 123 extern (C) uint gc_clrAttr( void* p, uint a ) pure nothrow; 124 125 extern (C) void* gc_addrOf( void* p ) pure nothrow @nogc; 126 extern (C) size_t gc_sizeOf( void* p ) pure nothrow @nogc; 127 128 struct BlkInfo_ 129 { 130 void* base; 131 size_t size; 132 uint attr; 133 } 134 135 extern (C) BlkInfo_ gc_query(return scope void* p) pure nothrow; 136 extern (C) GC.Stats gc_stats ( ) @safe nothrow @nogc; 137 extern (C) GC.ProfileStats gc_profileStats ( ) nothrow @nogc @safe; 138 } 139 140 version (CoreDoc) 141 { 142 /** 143 * The minimum size of a system page in bytes. 144 * 145 * This is a compile time, platform specific value. This value might not 146 * be accurate, since it might be possible to change this value. Whenever 147 * possible, please use $(LREF pageSize) instead, which is initialized 148 * during runtime. 149 * 150 * The minimum size is useful when the context requires a compile time known 151 * value, like the size of a static array: `ubyte[minimumPageSize] buffer`. 152 */ 153 enum minimumPageSize : size_t; 154 } 155 else version (AnyARM) 156 { 157 version (iOSDerived) 158 enum size_t minimumPageSize = 16384; 159 else 160 enum size_t minimumPageSize = 4096; 161 } 162 else 163 enum size_t minimumPageSize = 4096; 164 165 /// 166 unittest 167 { 168 ubyte[minimumPageSize] buffer; 169 } 170 171 /** 172 * The size of a system page in bytes. 173 * 174 * This value is set at startup time of the application. It's safe to use 175 * early in the start process, like in shared module constructors and 176 * initialization of the D runtime itself. 177 */ 178 immutable size_t pageSize; 179 180 /// 181 unittest 182 { 183 ubyte[] buffer = new ubyte[pageSize]; 184 } 185 186 // The reason for this elaborated way of declaring a function is: 187 // 188 // * `pragma(crt_constructor)` is used to declare a constructor that is called by 189 // the C runtime, before C main. This allows the `pageSize` value to be used 190 // during initialization of the D runtime. This also avoids any issues with 191 // static module constructors and circular references. 192 // 193 // * `pragma(mangle)` is used because `pragma(crt_constructor)` requires a 194 // function with C linkage. To avoid any name conflict with other C symbols, 195 // standard D mangling is used. 196 // 197 // * The extra function declaration, without the body, is to be able to get the 198 // D mangling of the function without the need to hardcode the value. 199 // 200 // * The extern function declaration also has the side effect of making it 201 // impossible to manually call the function with standard syntax. This is to 202 // make it more difficult to call the function again, manually. 203 private void initialize(); 204 pragma(crt_constructor) 205 pragma(mangle, initialize.mangleof) 206 private extern (C) void _initialize() @system 207 { 208 version (Posix) 209 { 210 import core.sys.posix.unistd : sysconf, _SC_PAGESIZE; 211 212 (cast() pageSize) = cast(size_t) sysconf(_SC_PAGESIZE); 213 } 214 else version (Windows) 215 { 216 import core.sys.windows.winbase : GetSystemInfo, SYSTEM_INFO; 217 218 SYSTEM_INFO si; 219 GetSystemInfo(&si); 220 (cast() pageSize) = cast(size_t) si.dwPageSize; 221 } 222 else version (FreeStanding) 223 { 224 225 } 226 else 227 static assert(false, __FUNCTION__ ~ " is not implemented on this platform"); 228 } 229 230 /** 231 * This struct encapsulates all garbage collection functionality for the D 232 * programming language. 233 */ 234 struct GC 235 { 236 @disable this(); 237 238 /** 239 * Aggregation of GC stats to be exposed via public API 240 */ 241 static struct Stats 242 { 243 /// number of used bytes on the GC heap (might only get updated after a collection) 244 size_t usedSize; 245 /// number of free bytes on the GC heap (might only get updated after a collection) 246 size_t freeSize; 247 /// number of bytes allocated for current thread since program start 248 ulong allocatedInCurrentThread; 249 } 250 251 /** 252 * Aggregation of current profile information 253 */ 254 static struct ProfileStats 255 { 256 import core.time : Duration; 257 /// total number of GC cycles 258 size_t numCollections; 259 /// total time spent doing GC 260 Duration totalCollectionTime; 261 /// total time threads were paused doing GC 262 Duration totalPauseTime; 263 /// largest time threads were paused during one GC cycle 264 Duration maxPauseTime; 265 /// largest time spent doing one GC cycle 266 Duration maxCollectionTime; 267 } 268 269 extern(C): 270 271 /** 272 * Enables automatic garbage collection behavior if collections have 273 * previously been suspended by a call to disable. This function is 274 * reentrant, and must be called once for every call to disable before 275 * automatic collections are enabled. 276 */ 277 pragma(mangle, "gc_enable") static void enable() @safe nothrow pure; 278 279 280 /** 281 * Disables automatic garbage collections performed to minimize the 282 * process footprint. Collections may continue to occur in instances 283 * where the implementation deems necessary for correct program behavior, 284 * such as during an out of memory condition. This function is reentrant, 285 * but enable must be called once for each call to disable. 286 */ 287 pragma(mangle, "gc_disable") static void disable() @safe nothrow pure; 288 289 290 /** 291 * Begins a full collection. While the meaning of this may change based 292 * on the garbage collector implementation, typical behavior is to scan 293 * all stack segments for roots, mark accessible memory blocks as alive, 294 * and then to reclaim free space. This action may need to suspend all 295 * running threads for at least part of the collection process. 296 */ 297 pragma(mangle, "gc_collect") static void collect() @safe nothrow pure; 298 299 /** 300 * Indicates that the managed memory space be minimized by returning free 301 * physical memory to the operating system. The amount of free memory 302 * returned depends on the allocator design and on program behavior. 303 */ 304 pragma(mangle, "gc_minimize") static void minimize() @safe nothrow pure; 305 306 extern(D): 307 308 /** 309 * Elements for a bit field representing memory block attributes. These 310 * are manipulated via the getAttr, setAttr, clrAttr functions. 311 */ 312 enum BlkAttr : uint 313 { 314 NONE = 0b0000_0000, /// No attributes set. 315 FINALIZE = 0b0000_0001, /// Finalize the data in this block on collect. 316 NO_SCAN = 0b0000_0010, /// Do not scan through this block on collect. 317 NO_MOVE = 0b0000_0100, /// Do not move this memory block on collect. 318 /** 319 This block contains the info to allow appending. 320 321 This can be used to manually allocate arrays. Initial slice size is 0. 322 323 Note: The slice's usable size will not match the block size. Use 324 $(LREF capacity) to retrieve actual usable capacity. 325 326 Example: 327 ---- 328 // Allocate the underlying array. 329 int* pToArray = cast(int*)GC.malloc(10 * int.sizeof, GC.BlkAttr.NO_SCAN | GC.BlkAttr.APPENDABLE); 330 // Bind a slice. Check the slice has capacity information. 331 int[] slice = pToArray[0 .. 0]; 332 assert(capacity(slice) > 0); 333 // Appending to the slice will not relocate it. 334 slice.length = 5; 335 slice ~= 1; 336 assert(slice.ptr == p); 337 ---- 338 */ 339 APPENDABLE = 0b0000_1000, 340 341 /** 342 This block is guaranteed to have a pointer to its base while it is 343 alive. Interior pointers can be safely ignored. This attribute is 344 useful for eliminating false pointers in very large data structures 345 and is only implemented for data structures at least a page in size. 346 */ 347 NO_INTERIOR = 0b0001_0000, 348 349 STRUCTFINAL = 0b0010_0000, // the block has a finalizer for (an array of) structs 350 } 351 352 353 /** 354 * Contains aggregate information about a block of managed memory. The 355 * purpose of this struct is to support a more efficient query style in 356 * instances where detailed information is needed. 357 * 358 * base = A pointer to the base of the block in question. 359 * size = The size of the block, calculated from base. 360 * attr = Attribute bits set on the memory block. 361 */ 362 alias BlkInfo = BlkInfo_; 363 364 365 /** 366 * Returns a bit field representing all block attributes set for the memory 367 * referenced by p. If p references memory not originally allocated by 368 * this garbage collector, points to the interior of a memory block, or if 369 * p is null, zero will be returned. 370 * 371 * Params: 372 * p = A pointer to the root of a valid memory block or to null. 373 * 374 * Returns: 375 * A bit field containing any bits set for the memory block referenced by 376 * p or zero on error. 377 */ 378 static uint getAttr( const scope void* p ) nothrow 379 { 380 return gc_getAttr(cast(void*) p); 381 } 382 383 384 /// ditto 385 static uint getAttr(void* p) pure nothrow 386 { 387 return gc_getAttr( p ); 388 } 389 390 391 /** 392 * Sets the specified bits for the memory references by p. If p references 393 * memory not originally allocated by this garbage collector, points to the 394 * interior of a memory block, or if p is null, no action will be 395 * performed. 396 * 397 * Params: 398 * p = A pointer to the root of a valid memory block or to null. 399 * a = A bit field containing any bits to set for this memory block. 400 * 401 * Returns: 402 * The result of a call to getAttr after the specified bits have been 403 * set. 404 */ 405 static uint setAttr( const scope void* p, uint a ) nothrow 406 { 407 return gc_setAttr(cast(void*) p, a); 408 } 409 410 411 /// ditto 412 static uint setAttr(void* p, uint a) pure nothrow 413 { 414 return gc_setAttr( p, a ); 415 } 416 417 418 /** 419 * Clears the specified bits for the memory references by p. If p 420 * references memory not originally allocated by this garbage collector, 421 * points to the interior of a memory block, or if p is null, no action 422 * will be performed. 423 * 424 * Params: 425 * p = A pointer to the root of a valid memory block or to null. 426 * a = A bit field containing any bits to clear for this memory block. 427 * 428 * Returns: 429 * The result of a call to getAttr after the specified bits have been 430 * cleared. 431 */ 432 static uint clrAttr( const scope void* p, uint a ) nothrow 433 { 434 return gc_clrAttr(cast(void*) p, a); 435 } 436 437 438 /// ditto 439 static uint clrAttr(void* p, uint a) pure nothrow 440 { 441 return gc_clrAttr( p, a ); 442 } 443 444 extern(C): 445 446 /** 447 * Requests an aligned block of managed memory from the garbage collector. 448 * This memory may be deleted at will with a call to free, or it may be 449 * discarded and cleaned up automatically during a collection run. If 450 * allocation fails, this function will call onOutOfMemory which is 451 * expected to throw an OutOfMemoryError. 452 * 453 * Params: 454 * sz = The desired allocation size in bytes. 455 * ba = A bitmask of the attributes to set on this block. 456 * ti = TypeInfo to describe the memory. The GC might use this information 457 * to improve scanning for pointers or to call finalizers. 458 * 459 * Returns: 460 * A reference to the allocated memory or null if insufficient memory 461 * is available. 462 * 463 * Throws: 464 * OutOfMemoryError on allocation failure. 465 */ 466 version (D_ProfileGC) 467 pragma(mangle, "gc_mallocTrace") static void* malloc(size_t sz, uint ba = 0, const scope TypeInfo ti = null, 468 string file = __FILE__, int line = __LINE__, string func = __FUNCTION__) pure nothrow; 469 else 470 pragma(mangle, "gc_malloc") static void* malloc(size_t sz, uint ba = 0, const scope TypeInfo ti = null) pure nothrow; 471 472 /** 473 * Requests an aligned block of managed memory from the garbage collector. 474 * This memory may be deleted at will with a call to free, or it may be 475 * discarded and cleaned up automatically during a collection run. If 476 * allocation fails, this function will call onOutOfMemory which is 477 * expected to throw an OutOfMemoryError. 478 * 479 * Params: 480 * sz = The desired allocation size in bytes. 481 * ba = A bitmask of the attributes to set on this block. 482 * ti = TypeInfo to describe the memory. The GC might use this information 483 * to improve scanning for pointers or to call finalizers. 484 * 485 * Returns: 486 * Information regarding the allocated memory block or BlkInfo.init on 487 * error. 488 * 489 * Throws: 490 * OutOfMemoryError on allocation failure. 491 */ 492 version (D_ProfileGC) 493 pragma(mangle, "gc_qallocTrace") static BlkInfo qalloc(size_t sz, uint ba = 0, const scope TypeInfo ti = null, 494 string file = __FILE__, int line = __LINE__, string func = __FUNCTION__) pure nothrow; 495 else 496 pragma(mangle, "gc_qalloc") static BlkInfo qalloc(size_t sz, uint ba = 0, const scope TypeInfo ti = null) pure nothrow; 497 498 499 /** 500 * Requests an aligned block of managed memory from the garbage collector, 501 * which is initialized with all bits set to zero. This memory may be 502 * deleted at will with a call to free, or it may be discarded and cleaned 503 * up automatically during a collection run. If allocation fails, this 504 * function will call onOutOfMemory which is expected to throw an 505 * OutOfMemoryError. 506 * 507 * Params: 508 * sz = The desired allocation size in bytes. 509 * ba = A bitmask of the attributes to set on this block. 510 * ti = TypeInfo to describe the memory. The GC might use this information 511 * to improve scanning for pointers or to call finalizers. 512 * 513 * Returns: 514 * A reference to the allocated memory or null if insufficient memory 515 * is available. 516 * 517 * Throws: 518 * OutOfMemoryError on allocation failure. 519 */ 520 version (D_ProfileGC) 521 pragma(mangle, "gc_callocTrace") static void* calloc(size_t sz, uint ba = 0, const TypeInfo ti = null, 522 string file = __FILE__, int line = __LINE__, string func = __FUNCTION__) pure nothrow; 523 else 524 pragma(mangle, "gc_calloc") static void* calloc(size_t sz, uint ba = 0, const TypeInfo ti = null) pure nothrow; 525 526 527 /** 528 * Extend, shrink or allocate a new block of memory keeping the contents of 529 * an existing block 530 * 531 * If `sz` is zero, the memory referenced by p will be deallocated as if 532 * by a call to `free`. 533 * If `p` is `null`, new memory will be allocated via `malloc`. 534 * If `p` is pointing to memory not allocated from the GC or to the interior 535 * of an allocated memory block, no operation is performed and null is returned. 536 * 537 * Otherwise, a new memory block of size `sz` will be allocated as if by a 538 * call to `malloc`, or the implementation may instead resize or shrink the memory 539 * block in place. 540 * The contents of the new memory block will be the same as the contents 541 * of the old memory block, up to the lesser of the new and old sizes. 542 * 543 * The caller guarantees that there are no other live pointers to the 544 * passed memory block, still it might not be freed immediately by `realloc`. 545 * The garbage collector can reclaim the memory block in a later 546 * collection if it is unused. 547 * If allocation fails, this function will throw an `OutOfMemoryError`. 548 * 549 * If `ba` is zero (the default) the attributes of the existing memory 550 * will be used for an allocation. 551 * If `ba` is not zero and no new memory is allocated, the bits in ba will 552 * replace those of the current memory block. 553 * 554 * Params: 555 * p = A pointer to the base of a valid memory block or to `null`. 556 * sz = The desired allocation size in bytes. 557 * ba = A bitmask of the BlkAttr attributes to set on this block. 558 * ti = TypeInfo to describe the memory. The GC might use this information 559 * to improve scanning for pointers or to call finalizers. 560 * 561 * Returns: 562 * A reference to the allocated memory on success or `null` if `sz` is 563 * zero or the pointer does not point to the base of an GC allocated 564 * memory block. 565 * 566 * Throws: 567 * `OutOfMemoryError` on allocation failure. 568 */ 569 version (D_ProfileGC) 570 pragma(mangle, "gc_reallocTrace") static void* realloc(return scope void* p, size_t sz, uint ba = 0, const TypeInfo ti = null, 571 string file = __FILE__, int line = __LINE__, string func = __FUNCTION__) pure nothrow; 572 else 573 pragma(mangle, "gc_realloc") static void* realloc(return scope void* p, size_t sz, uint ba = 0, const TypeInfo ti = null) pure nothrow; 574 575 // https://issues.dlang.org/show_bug.cgi?id=13111 576 /// 577 unittest 578 { 579 enum size1 = 1 << 11 + 1; // page in large object pool 580 enum size2 = 1 << 22 + 1; // larger than large object pool size 581 582 auto data1 = cast(ubyte*)GC.calloc(size1); 583 auto data2 = cast(ubyte*)GC.realloc(data1, size2); 584 585 GC.BlkInfo info = GC.query(data2); 586 assert(info.size >= size2); 587 } 588 589 590 /** 591 * Requests that the managed memory block referenced by p be extended in 592 * place by at least mx bytes, with a desired extension of sz bytes. If an 593 * extension of the required size is not possible or if p references memory 594 * not originally allocated by this garbage collector, no action will be 595 * taken. 596 * 597 * Params: 598 * p = A pointer to the root of a valid memory block or to null. 599 * mx = The minimum extension size in bytes. 600 * sz = The desired extension size in bytes. 601 * ti = TypeInfo to describe the full memory block. The GC might use 602 * this information to improve scanning for pointers or to 603 * call finalizers. 604 * 605 * Returns: 606 * The size in bytes of the extended memory block referenced by p or zero 607 * if no extension occurred. 608 * 609 * Note: 610 * Extend may also be used to extend slices (or memory blocks with 611 * $(LREF APPENDABLE) info). However, use the return value only 612 * as an indicator of success. $(LREF capacity) should be used to 613 * retrieve actual usable slice capacity. 614 */ 615 version (D_ProfileGC) 616 pragma(mangle, "gc_extendTrace") static size_t extend(void* p, size_t mx, size_t sz, const TypeInfo ti = null, 617 string file = __FILE__, int line = __LINE__, string func = __FUNCTION__) pure nothrow; 618 else 619 pragma(mangle, "gc_extend") static size_t extend(void* p, size_t mx, size_t sz, const TypeInfo ti = null) pure nothrow; 620 621 /// Standard extending 622 unittest 623 { 624 size_t size = 1000; 625 int* p = cast(int*)GC.malloc(size * int.sizeof, GC.BlkAttr.NO_SCAN); 626 627 //Try to extend the allocated data by 1000 elements, preferred 2000. 628 size_t u = GC.extend(p, 1000 * int.sizeof, 2000 * int.sizeof); 629 if (u != 0) 630 size = u / int.sizeof; 631 } 632 /// slice extending 633 unittest 634 { 635 int[] slice = new int[](1000); 636 int* p = slice.ptr; 637 638 //Check we have access to capacity before attempting the extend 639 if (slice.capacity) 640 { 641 //Try to extend slice by 1000 elements, preferred 2000. 642 size_t u = GC.extend(p, 1000 * int.sizeof, 2000 * int.sizeof); 643 if (u != 0) 644 { 645 slice.length = slice.capacity; 646 assert(slice.length >= 2000); 647 } 648 } 649 } 650 651 652 /** 653 * Requests that at least sz bytes of memory be obtained from the operating 654 * system and marked as free. 655 * 656 * Params: 657 * sz = The desired size in bytes. 658 * 659 * Returns: 660 * The actual number of bytes reserved or zero on error. 661 */ 662 pragma(mangle, "gc_reserve") static size_t reserve(size_t sz) nothrow pure; 663 664 665 /** 666 * Deallocates the memory referenced by p. If p is null, no action occurs. 667 * If p references memory not originally allocated by this garbage 668 * collector, if p points to the interior of a memory block, or if this 669 * method is called from a finalizer, no action will be taken. The block 670 * will not be finalized regardless of whether the FINALIZE attribute is 671 * set. If finalization is desired, call $(REF1 destroy, object) prior to `GC.free`. 672 * 673 * Params: 674 * p = A pointer to the root of a valid memory block or to null. 675 */ 676 pragma(mangle, "gc_free") static void free(void* p) pure nothrow @nogc; 677 678 extern(D): 679 680 /** 681 * Returns the base address of the memory block containing p. This value 682 * is useful to determine whether p is an interior pointer, and the result 683 * may be passed to routines such as sizeOf which may otherwise fail. If p 684 * references memory not originally allocated by this garbage collector, if 685 * p is null, or if the garbage collector does not support this operation, 686 * null will be returned. 687 * 688 * Params: 689 * p = A pointer to the root or the interior of a valid memory block or to 690 * null. 691 * 692 * Returns: 693 * The base address of the memory block referenced by p or null on error. 694 */ 695 static inout(void)* addrOf( inout(void)* p ) nothrow @nogc pure @trusted 696 { 697 return cast(inout(void)*)gc_addrOf(cast(void*)p); 698 } 699 700 /// ditto 701 static void* addrOf(void* p) pure nothrow @nogc @trusted 702 { 703 return gc_addrOf(p); 704 } 705 706 /** 707 * Returns the true size of the memory block referenced by p. This value 708 * represents the maximum number of bytes for which a call to realloc may 709 * resize the existing block in place. If p references memory not 710 * originally allocated by this garbage collector, points to the interior 711 * of a memory block, or if p is null, zero will be returned. 712 * 713 * Params: 714 * p = A pointer to the root of a valid memory block or to null. 715 * 716 * Returns: 717 * The size in bytes of the memory block referenced by p or zero on error. 718 */ 719 static size_t sizeOf( const scope void* p ) nothrow @nogc /* FIXME pure */ 720 { 721 return gc_sizeOf(cast(void*)p); 722 } 723 724 725 /// ditto 726 static size_t sizeOf(void* p) pure nothrow @nogc 727 { 728 return gc_sizeOf( p ); 729 } 730 731 // verify that the reallocation doesn't leave the size cache in a wrong state 732 unittest 733 { 734 auto data = cast(int*)realloc(null, 4096); 735 size_t size = GC.sizeOf(data); 736 assert(size >= 4096); 737 data = cast(int*)GC.realloc(data, 4100); 738 size = GC.sizeOf(data); 739 assert(size >= 4100); 740 } 741 742 /** 743 * Returns aggregate information about the memory block containing p. If p 744 * references memory not originally allocated by this garbage collector, if 745 * p is null, or if the garbage collector does not support this operation, 746 * BlkInfo.init will be returned. Typically, support for this operation 747 * is dependent on support for addrOf. 748 * 749 * Params: 750 * p = A pointer to the root or the interior of a valid memory block or to 751 * null. 752 * 753 * Returns: 754 * Information regarding the memory block referenced by p or BlkInfo.init 755 * on error. 756 */ 757 static BlkInfo query(return scope const void* p) nothrow 758 { 759 return gc_query(cast(void*)p); 760 } 761 762 763 /// ditto 764 static BlkInfo query(return scope void* p) pure nothrow 765 { 766 return gc_query( p ); 767 } 768 769 /** 770 * Returns runtime stats for currently active GC implementation 771 * See `core.memory.GC.Stats` for list of available metrics. 772 */ 773 static Stats stats() @safe nothrow @nogc 774 { 775 return gc_stats(); 776 } 777 778 /** 779 * Returns runtime profile stats for currently active GC implementation 780 * See `core.memory.GC.ProfileStats` for list of available metrics. 781 */ 782 static ProfileStats profileStats() nothrow @nogc @safe 783 { 784 return gc_profileStats(); 785 } 786 787 extern(C): 788 789 /** 790 * Adds an internal root pointing to the GC memory block referenced by p. 791 * As a result, the block referenced by p itself and any blocks accessible 792 * via it will be considered live until the root is removed again. 793 * 794 * If p is null, no operation is performed. 795 * 796 * Params: 797 * p = A pointer into a GC-managed memory block or null. 798 * 799 * Example: 800 * --- 801 * // Typical C-style callback mechanism; the passed function 802 * // is invoked with the user-supplied context pointer at a 803 * // later point. 804 * extern(C) void addCallback(void function(void*), void*); 805 * 806 * // Allocate an object on the GC heap (this would usually be 807 * // some application-specific context data). 808 * auto context = new Object; 809 * 810 * // Make sure that it is not collected even if it is no 811 * // longer referenced from D code (stack, GC heap, …). 812 * GC.addRoot(cast(void*)context); 813 * 814 * // Also ensure that a moving collector does not relocate 815 * // the object. 816 * GC.setAttr(cast(void*)context, GC.BlkAttr.NO_MOVE); 817 * 818 * // Now context can be safely passed to the C library. 819 * addCallback(&myHandler, cast(void*)context); 820 * 821 * extern(C) void myHandler(void* ctx) 822 * { 823 * // Assuming that the callback is invoked only once, the 824 * // added root can be removed again now to allow the GC 825 * // to collect it later. 826 * GC.removeRoot(ctx); 827 * GC.clrAttr(ctx, GC.BlkAttr.NO_MOVE); 828 * 829 * auto context = cast(Object)ctx; 830 * // Use context here… 831 * } 832 * --- 833 */ 834 pragma(mangle, "gc_addRoot") static void addRoot(const void* p) nothrow @nogc pure; 835 836 837 /** 838 * Removes the memory block referenced by p from an internal list of roots 839 * to be scanned during a collection. If p is null or is not a value 840 * previously passed to addRoot() then no operation is performed. 841 * 842 * Params: 843 * p = A pointer into a GC-managed memory block or null. 844 */ 845 pragma(mangle, "gc_removeRoot") static void removeRoot(const void* p) nothrow @nogc pure; 846 847 848 /** 849 * Adds $(D p[0 .. sz]) to the list of memory ranges to be scanned for 850 * pointers during a collection. If p is null, no operation is performed. 851 * 852 * Note that $(D p[0 .. sz]) is treated as an opaque range of memory assumed 853 * to be suitably managed by the caller. In particular, if p points into a 854 * GC-managed memory block, addRange does $(I not) mark this block as live. 855 * 856 * Params: 857 * p = A pointer to a valid memory address or to null. 858 * sz = The size in bytes of the block to add. If sz is zero then the 859 * no operation will occur. If p is null then sz must be zero. 860 * ti = TypeInfo to describe the memory. The GC might use this information 861 * to improve scanning for pointers or to call finalizers 862 * 863 * Example: 864 * --- 865 * // Allocate a piece of memory on the C heap. 866 * enum size = 1_000; 867 * auto rawMemory = core.stdc.stdlib.malloc(size); 868 * 869 * // Add it as a GC range. 870 * GC.addRange(rawMemory, size); 871 * 872 * // Now, pointers to GC-managed memory stored in 873 * // rawMemory will be recognized on collection. 874 * --- 875 */ 876 pragma(mangle, "gc_addRange") 877 static void addRange(const void* p, size_t sz, const TypeInfo ti = null) @nogc nothrow pure; 878 879 880 /** 881 * Removes the memory range starting at p from an internal list of ranges 882 * to be scanned during a collection. If p is null or does not represent 883 * a value previously passed to addRange() then no operation is 884 * performed. 885 * 886 * Params: 887 * p = A pointer to a valid memory address or to null. 888 */ 889 pragma(mangle, "gc_removeRange") static void removeRange(const void* p) nothrow @nogc pure; 890 891 892 /** 893 * Runs any finalizer that is located in address range of the 894 * given code segment. This is used before unloading shared 895 * libraries. All matching objects which have a finalizer in this 896 * code segment are assumed to be dead, using them while or after 897 * calling this method has undefined behavior. 898 * 899 * Params: 900 * segment = address range of a code segment. 901 */ 902 pragma(mangle, "gc_runFinalizers") static void runFinalizers(const scope void[] segment); 903 904 /** 905 * Queries the GC whether the current thread is running object finalization 906 * as part of a GC collection, or an explicit call to runFinalizers. 907 * 908 * As some GC implementations (such as the current conservative one) don't 909 * support GC memory allocation during object finalization, this function 910 * can be used to guard against such programming errors. 911 * 912 * Returns: 913 * true if the current thread is in a finalizer, a destructor invoked by 914 * the GC. 915 */ 916 pragma(mangle, "gc_inFinalizer") static bool inFinalizer() nothrow @nogc @safe; 917 918 /// 919 @safe nothrow @nogc unittest 920 { 921 // Only code called from a destructor is executed during finalization. 922 assert(!GC.inFinalizer); 923 } 924 925 /// 926 unittest 927 { 928 enum Outcome 929 { 930 notCalled, 931 calledManually, 932 calledFromDruntime 933 } 934 935 static class Resource 936 { 937 static Outcome outcome; 938 939 this() 940 { 941 outcome = Outcome.notCalled; 942 } 943 944 ~this() 945 { 946 if (GC.inFinalizer) 947 { 948 outcome = Outcome.calledFromDruntime; 949 950 import core.exception : InvalidMemoryOperationError; 951 try 952 { 953 /* 954 * Presently, allocating GC memory during finalization 955 * is forbidden and leads to 956 * `InvalidMemoryOperationError` being thrown. 957 * 958 * `GC.inFinalizer` can be used to guard against 959 * programming erros such as these and is also a more 960 * efficient way to verify whether a destructor was 961 * invoked by the GC. 962 */ 963 cast(void) GC.malloc(1); 964 assert(false); 965 } 966 catch (InvalidMemoryOperationError e) 967 { 968 return; 969 } 970 assert(false); 971 } 972 else 973 outcome = Outcome.calledManually; 974 } 975 } 976 977 static void createGarbage() 978 { 979 auto r = new Resource; 980 r = null; 981 } 982 983 assert(Resource.outcome == Outcome.notCalled); 984 createGarbage(); 985 GC.collect; 986 assert( 987 Resource.outcome == Outcome.notCalled || 988 Resource.outcome == Outcome.calledFromDruntime); 989 990 auto r = new Resource; 991 GC.runFinalizers((cast(const void*)typeid(Resource).destructor)[0..1]); 992 assert(Resource.outcome == Outcome.calledFromDruntime); 993 Resource.outcome = Outcome.notCalled; 994 995 debug(MEMSTOMP) {} else 996 { 997 // assume Resource data is still available 998 r.destroy; 999 assert(Resource.outcome == Outcome.notCalled); 1000 } 1001 1002 r = new Resource; 1003 assert(Resource.outcome == Outcome.notCalled); 1004 r.destroy; 1005 assert(Resource.outcome == Outcome.calledManually); 1006 } 1007 1008 /** 1009 * Returns the number of bytes allocated for the current thread 1010 * since program start. It is the same as 1011 * GC.stats().allocatedInCurrentThread, but faster. 1012 */ 1013 pragma(mangle, "gc_allocatedInCurrentThread") static ulong allocatedInCurrentThread() nothrow; 1014 1015 /// Using allocatedInCurrentThread 1016 nothrow unittest 1017 { 1018 ulong currentlyAllocated = GC.allocatedInCurrentThread(); 1019 struct DataStruct 1020 { 1021 long l1; 1022 long l2; 1023 long l3; 1024 long l4; 1025 } 1026 DataStruct* unused = new DataStruct; 1027 assert(GC.allocatedInCurrentThread() == currentlyAllocated + 32); 1028 assert(GC.stats().allocatedInCurrentThread == currentlyAllocated + 32); 1029 } 1030 } 1031 1032 /** 1033 * Pure variants of C's memory allocation functions `malloc`, `calloc`, and 1034 * `realloc` and deallocation function `free`. 1035 * 1036 * UNIX 98 requires that errno be set to ENOMEM upon failure. 1037 * Purity is achieved by saving and restoring the value of `errno`, thus 1038 * behaving as if it were never changed. 1039 * 1040 * See_Also: 1041 * $(LINK2 https://dlang.org/spec/function.html#pure-functions, D's rules for purity), 1042 * which allow for memory allocation under specific circumstances. 1043 */ 1044 void* pureMalloc()(size_t size) @trusted pure @nogc nothrow 1045 { 1046 const errnosave = fakePureErrno; 1047 void* ret = fakePureMalloc(size); 1048 fakePureErrno = errnosave; 1049 return ret; 1050 } 1051 /// ditto 1052 void* pureCalloc()(size_t nmemb, size_t size) @trusted pure @nogc nothrow 1053 { 1054 const errnosave = fakePureErrno; 1055 void* ret = fakePureCalloc(nmemb, size); 1056 fakePureErrno = errnosave; 1057 return ret; 1058 } 1059 /// ditto 1060 void* pureRealloc()(void* ptr, size_t size) @system pure @nogc nothrow 1061 { 1062 const errnosave = fakePureErrno; 1063 void* ret = fakePureRealloc(ptr, size); 1064 fakePureErrno = errnosave; 1065 return ret; 1066 } 1067 1068 /// ditto 1069 void pureFree()(void* ptr) @system pure @nogc nothrow 1070 { 1071 version (Posix) 1072 { 1073 // POSIX free doesn't set errno 1074 fakePureFree(ptr); 1075 } 1076 else 1077 { 1078 const errnosave = fakePureErrno; 1079 fakePureFree(ptr); 1080 fakePureErrno = errnosave; 1081 } 1082 } 1083 1084 /// 1085 @system pure nothrow @nogc unittest 1086 { 1087 ubyte[] fun(size_t n) pure 1088 { 1089 void* p = pureMalloc(n); 1090 p !is null || n == 0 || assert(0); 1091 scope(failure) p = pureRealloc(p, 0); 1092 p = pureRealloc(p, n *= 2); 1093 p !is null || n == 0 || assert(0); 1094 return cast(ubyte[]) p[0 .. n]; 1095 } 1096 1097 auto buf = fun(100); 1098 assert(buf.length == 200); 1099 pureFree(buf.ptr); 1100 } 1101 1102 @system pure nothrow @nogc unittest 1103 { 1104 const int errno = fakePureErrno(); 1105 1106 void* x = pureMalloc(10); // normal allocation 1107 assert(errno == fakePureErrno()); // errno shouldn't change 1108 assert(x !is null); // allocation should succeed 1109 1110 x = pureRealloc(x, 10); // normal reallocation 1111 assert(errno == fakePureErrno()); // errno shouldn't change 1112 assert(x !is null); // allocation should succeed 1113 1114 fakePureFree(x); 1115 1116 void* y = pureCalloc(10, 1); // normal zeroed allocation 1117 assert(errno == fakePureErrno()); // errno shouldn't change 1118 assert(y !is null); // allocation should succeed 1119 1120 fakePureFree(y); 1121 1122 version (LDC_AddressSanitizer) 1123 { 1124 // Test must be disabled because ASan will report an error: requested allocation size 0xffffffffffffff00 (0x700 after adjustments for alignment, red zones etc.) exceeds maximum supported size of 0x10000000000 1125 } 1126 else 1127 { 1128 // Workaround bug in glibc 2.26 1129 // See also: https://issues.dlang.org/show_bug.cgi?id=17956 1130 void* z = pureMalloc(size_t.max & ~255); // won't affect `errno` 1131 assert(errno == fakePureErrno()); // errno shouldn't change 1132 } 1133 version (LDC) 1134 { 1135 // LLVM's 'Combine redundant instructions' optimization pass 1136 // completely elides allocating `y` and `z`. Allocations with 1137 // sizes > 0 are apparently assumed to always succeed (and 1138 // return non-null), so the following assert fails with -O3. 1139 } 1140 else 1141 { 1142 assert(z is null); 1143 } 1144 } 1145 1146 // locally purified for internal use here only 1147 1148 static import core.stdc.errno; 1149 static if (__traits(getOverloads, core.stdc.errno, "errno").length == 1 1150 && __traits(getLinkage, core.stdc.errno.errno) == "C") 1151 { 1152 extern(C) pragma(mangle, __traits(identifier, core.stdc.errno.errno)) 1153 private ref int fakePureErrno() @nogc nothrow pure @system; 1154 } 1155 else 1156 { 1157 extern(C) private @nogc nothrow pure @system 1158 { 1159 pragma(mangle, __traits(identifier, core.stdc.errno.getErrno)) 1160 @property int fakePureErrno(); 1161 1162 pragma(mangle, __traits(identifier, core.stdc.errno.setErrno)) 1163 @property int fakePureErrno(int); 1164 } 1165 } 1166 1167 version (D_BetterC) {} 1168 else // TODO: remove this function after Phobos no longer needs it. 1169 extern (C) private @system @nogc nothrow 1170 { 1171 ref int fakePureErrnoImpl() 1172 { 1173 import core.stdc.errno; 1174 return errno(); 1175 } 1176 } 1177 1178 extern (C) private pure @system @nogc nothrow 1179 { 1180 pragma(mangle, "malloc") void* fakePureMalloc(size_t); 1181 pragma(mangle, "calloc") void* fakePureCalloc(size_t nmemb, size_t size); 1182 pragma(mangle, "realloc") void* fakePureRealloc(void* ptr, size_t size); 1183 1184 pragma(mangle, "free") void fakePureFree(void* ptr); 1185 } 1186 1187 /** 1188 Destroys and then deallocates an object. 1189 1190 In detail, `__delete(x)` returns with no effect if `x` is `null`. Otherwise, it 1191 performs the following actions in sequence: 1192 $(UL 1193 $(LI 1194 Calls the destructor `~this()` for the object referred to by `x` 1195 (if `x` is a class or interface reference) or 1196 for the object pointed to by `x` (if `x` is a pointer to a `struct`). 1197 Arrays of structs call the destructor, if defined, for each element in the array. 1198 If no destructor is defined, this step has no effect. 1199 ) 1200 $(LI 1201 Frees the memory allocated for `x`. If `x` is a reference to a class 1202 or interface, the memory allocated for the underlying instance is freed. If `x` is 1203 a pointer, the memory allocated for the pointed-to object is freed. If `x` is a 1204 built-in array, the memory allocated for the array is freed. 1205 If `x` does not refer to memory previously allocated with `new` (or the lower-level 1206 equivalents in the GC API), the behavior is undefined. 1207 ) 1208 $(LI 1209 Lastly, `x` is set to `null`. Any attempt to read or write the freed memory via 1210 other references will result in undefined behavior. 1211 ) 1212 ) 1213 1214 Note: Users should prefer $(REF1 destroy, object) to explicitly finalize objects, 1215 and only resort to $(REF __delete, core,memory) when $(REF destroy, object) 1216 wouldn't be a feasible option. 1217 1218 Params: 1219 x = aggregate object that should be destroyed 1220 1221 See_Also: $(REF1 destroy, object), $(REF free, core,GC) 1222 1223 History: 1224 1225 The `delete` keyword allowed to free GC-allocated memory. 1226 As this is inherently not `@safe`, it has been deprecated. 1227 This function has been added to provide an easy transition from `delete`. 1228 It performs the same functionality as the former `delete` keyword. 1229 */ 1230 void __delete(T)(ref T x) @system 1231 { 1232 static void _destructRecurse(S)(ref S s) 1233 if (is(S == struct)) 1234 { 1235 static if (__traits(hasMember, S, "__xdtor") && 1236 // Bugzilla 14746: Check that it's the exact member of S. 1237 __traits(isSame, S, __traits(parent, s.__xdtor))) 1238 s.__xdtor(); 1239 } 1240 1241 // See also: https://github.com/dlang/dmd/blob/v2.078.0/src/dmd/e2ir.d#L3886 1242 static if (is(T == interface)) 1243 { 1244 .object.destroy(x); 1245 } 1246 else static if (is(T == class)) 1247 { 1248 .object.destroy(x); 1249 } 1250 else static if (is(T == U*, U)) 1251 { 1252 static if (is(U == struct)) 1253 { 1254 if (x) 1255 _destructRecurse(*x); 1256 } 1257 } 1258 else static if (is(T : E[], E)) 1259 { 1260 static if (is(E == struct)) 1261 { 1262 foreach_reverse (ref e; x) 1263 _destructRecurse(e); 1264 } 1265 } 1266 else 1267 { 1268 static assert(0, "It is not possible to delete: `" ~ T.stringof ~ "`"); 1269 } 1270 1271 static if (is(T == interface) || 1272 is(T == class) || 1273 is(T == U2*, U2)) 1274 { 1275 GC.free(GC.addrOf(cast(void*) x)); 1276 x = null; 1277 } 1278 else static if (is(T : E2[], E2)) 1279 { 1280 GC.free(GC.addrOf(cast(void*) x.ptr)); 1281 x = null; 1282 } 1283 } 1284 1285 /// Deleting classes 1286 unittest 1287 { 1288 bool dtorCalled; 1289 class B 1290 { 1291 int test; 1292 ~this() 1293 { 1294 dtorCalled = true; 1295 } 1296 } 1297 B b = new B(); 1298 B a = b; 1299 b.test = 10; 1300 1301 assert(GC.addrOf(cast(void*) b) != null); 1302 __delete(b); 1303 assert(b is null); 1304 assert(dtorCalled); 1305 assert(GC.addrOf(cast(void*) b) == null); 1306 // but be careful, a still points to it 1307 assert(a !is null); 1308 assert(GC.addrOf(cast(void*) a) == null); // but not a valid GC pointer 1309 } 1310 1311 /// Deleting interfaces 1312 unittest 1313 { 1314 bool dtorCalled; 1315 interface A 1316 { 1317 int quack(); 1318 } 1319 class B : A 1320 { 1321 int a; 1322 int quack() 1323 { 1324 a++; 1325 return a; 1326 } 1327 ~this() 1328 { 1329 dtorCalled = true; 1330 } 1331 } 1332 A a = new B(); 1333 a.quack(); 1334 1335 assert(GC.addrOf(cast(void*) a) != null); 1336 __delete(a); 1337 assert(a is null); 1338 assert(dtorCalled); 1339 assert(GC.addrOf(cast(void*) a) == null); 1340 } 1341 1342 /// Deleting structs 1343 unittest 1344 { 1345 bool dtorCalled; 1346 struct A 1347 { 1348 string test; 1349 ~this() 1350 { 1351 dtorCalled = true; 1352 } 1353 } 1354 auto a = new A("foo"); 1355 1356 assert(GC.addrOf(cast(void*) a) != null); 1357 __delete(a); 1358 assert(a is null); 1359 assert(dtorCalled); 1360 assert(GC.addrOf(cast(void*) a) == null); 1361 1362 // https://issues.dlang.org/show_bug.cgi?id=22779 1363 A *aptr; 1364 __delete(aptr); 1365 } 1366 1367 /// Deleting arrays 1368 unittest 1369 { 1370 int[] a = [1, 2, 3]; 1371 auto b = a; 1372 1373 assert(GC.addrOf(b.ptr) != null); 1374 __delete(b); 1375 assert(b is null); 1376 assert(GC.addrOf(b.ptr) == null); 1377 // but be careful, a still points to it 1378 assert(a !is null); 1379 assert(GC.addrOf(a.ptr) == null); // but not a valid GC pointer 1380 } 1381 1382 /// Deleting arrays of structs 1383 unittest 1384 { 1385 int dtorCalled; 1386 struct A 1387 { 1388 int a; 1389 ~this() 1390 { 1391 assert(dtorCalled == a); 1392 dtorCalled++; 1393 } 1394 } 1395 auto arr = [A(1), A(2), A(3)]; 1396 arr[0].a = 2; 1397 arr[1].a = 1; 1398 arr[2].a = 0; 1399 1400 assert(GC.addrOf(arr.ptr) != null); 1401 __delete(arr); 1402 assert(dtorCalled == 3); 1403 assert(GC.addrOf(arr.ptr) == null); 1404 } 1405 1406 // Deleting raw memory 1407 unittest 1408 { 1409 import core.memory : GC; 1410 auto a = GC.malloc(5); 1411 assert(GC.addrOf(cast(void*) a) != null); 1412 __delete(a); 1413 assert(a is null); 1414 assert(GC.addrOf(cast(void*) a) == null); 1415 } 1416 1417 // __delete returns with no effect if x is null 1418 unittest 1419 { 1420 Object x = null; 1421 __delete(x); 1422 1423 struct S { ~this() { } } 1424 class C { } 1425 interface I { } 1426 1427 int[] a; __delete(a); 1428 S[] as; __delete(as); 1429 C c; __delete(c); 1430 I i; __delete(i); 1431 C* pc = &c; __delete(*pc); 1432 I* pi = &i; __delete(*pi); 1433 int* pint; __delete(pint); 1434 S* ps; __delete(ps); 1435 } 1436 1437 // https://issues.dlang.org/show_bug.cgi?id=19092 1438 unittest 1439 { 1440 const(int)[] x = [1, 2, 3]; 1441 assert(GC.addrOf(x.ptr) != null); 1442 __delete(x); 1443 assert(x is null); 1444 assert(GC.addrOf(x.ptr) == null); 1445 1446 immutable(int)[] y = [1, 2, 3]; 1447 assert(GC.addrOf(y.ptr) != null); 1448 __delete(y); 1449 assert(y is null); 1450 assert(GC.addrOf(y.ptr) == null); 1451 } 1452 1453 // test realloc behaviour 1454 unittest 1455 { 1456 static void set(int* p, size_t size) 1457 { 1458 foreach (i; 0 .. size) 1459 *p++ = cast(int) i; 1460 } 1461 static void verify(int* p, size_t size) 1462 { 1463 foreach (i; 0 .. size) 1464 assert(*p++ == i); 1465 } 1466 static void test(size_t memsize) 1467 { 1468 int* p = cast(int*) GC.malloc(memsize * int.sizeof); 1469 assert(p); 1470 set(p, memsize); 1471 verify(p, memsize); 1472 1473 int* q = cast(int*) GC.realloc(p + 4, 2 * memsize * int.sizeof); 1474 assert(q == null); 1475 1476 q = cast(int*) GC.realloc(p + memsize / 2, 2 * memsize * int.sizeof); 1477 assert(q == null); 1478 1479 q = cast(int*) GC.realloc(p + memsize - 1, 2 * memsize * int.sizeof); 1480 assert(q == null); 1481 1482 int* r = cast(int*) GC.realloc(p, 5 * memsize * int.sizeof); 1483 verify(r, memsize); 1484 set(r, 5 * memsize); 1485 1486 int* s = cast(int*) GC.realloc(r, 2 * memsize * int.sizeof); 1487 verify(s, 2 * memsize); 1488 1489 assert(GC.realloc(s, 0) == null); // free 1490 assert(GC.addrOf(p) == null); 1491 } 1492 1493 test(16); 1494 test(200); 1495 test(800); // spans large and small pools 1496 test(1200); 1497 test(8000); 1498 1499 void* p = GC.malloc(100); 1500 assert(GC.realloc(&p, 50) == null); // non-GC pointer 1501 } 1502 1503 // test GC.profileStats 1504 unittest 1505 { 1506 auto stats = GC.profileStats(); 1507 GC.collect(); 1508 auto nstats = GC.profileStats(); 1509 assert(nstats.numCollections > stats.numCollections); 1510 } 1511 1512 // in rt.lifetime: 1513 private extern (C) void* _d_newitemU(scope const TypeInfo _ti) @system pure nothrow; 1514 1515 /** 1516 Moves a value to a new GC allocation. 1517 1518 Params: 1519 value = Value to be moved. If the argument is an lvalue and a struct with a 1520 destructor or postblit, it will be reset to its `.init` value. 1521 1522 Returns: 1523 A pointer to the new GC-allocated value. 1524 */ 1525 T* moveToGC(T)(auto ref T value) 1526 { 1527 static T* doIt(ref T value) @trusted 1528 { 1529 import core.lifetime : moveEmplace; 1530 auto mem = cast(T*) _d_newitemU(typeid(T)); // allocate but don't initialize 1531 moveEmplace(value, *mem); 1532 return mem; 1533 } 1534 1535 return doIt(value); // T dtor might be @system 1536 } 1537 1538 /// 1539 @safe pure nothrow unittest 1540 { 1541 struct S 1542 { 1543 int x; 1544 this(this) @disable; 1545 ~this() @safe pure nothrow @nogc {} 1546 } 1547 1548 S* p; 1549 1550 // rvalue 1551 p = moveToGC(S(123)); 1552 assert(p.x == 123); 1553 1554 // lvalue 1555 auto lval = S(456); 1556 p = moveToGC(lval); 1557 assert(p.x == 456); 1558 assert(lval.x == 0); 1559 } 1560 1561 // @system dtor 1562 unittest 1563 { 1564 struct S 1565 { 1566 int x; 1567 ~this() @system {} 1568 } 1569 1570 // lvalue case is @safe, ref param isn't destructed 1571 static assert(__traits(compiles, (ref S lval) @safe { moveToGC(lval); })); 1572 1573 // rvalue case is @system, value param is destructed 1574 static assert(!__traits(compiles, () @safe { moveToGC(S(0)); })); 1575 }